java中怎么既能高并发效率又能java多线程并发实例安全

29545人阅读
Java面试(7)
1&什么是并发问题。
多个进程或线程同时(或着说在同一段时间内)访问同一资源会产生并发问题。
银行两操作员同时操作同一账户就是典型的例子。比如A、B操作员同时读取一余额为1000元的账户,A操作员为该账户增加100元,B操作员同时为该账户减去 50元,A先提交,B后提交。 最后实际账户余额为元,但本该为 -50=1050。这就是典型的并发问题。如何解决?可以用锁。
public class Test{
public synchronized void print(){
某线程执行print()方法,则该对象将加锁。其它线程将无法执行该对象的所有synchronized块。
public class Test{
public void print(){
synchronized(this){//锁住本对象
同用法1, 但更能体现synchronized用法的本质。
public class Test{
private String a = &test&;
public void print(){
synchronized(a){//锁住a对象
public synchronized void t(){
...; //这个同步代码块不会因为print()而锁定.
执行print(),会给对象a加锁,注意不是给Test的对象加锁,也就是说 Test对象的其它synchronized方法不会因为print()而被锁。同步代码块执行完,则释放对a的锁。
为了锁住一个对象的代码块而不影响该对象其它 synchronized块的高性能写法:
public class Test{
private byte[] lock = new byte[0];
public void print(){
synchronized(lock){
public synchronized void t(){
静态方法的锁
public class Test{
public synchronized static void execute(){
public class Test{
public static void execute(){
synchronized(TestThread.class){
3&Java中的锁与排队上厕所。
锁就是阻止其它进程或线程进行资源访问的一种方式,即锁住的资源不能被其它请求访问。在JAVA中,sychronized关键字用来对一个对象加锁。比如:
public class MyStack {
int idx = 0;
char [] data = new char[6];
public synchronized void push(char c) {
data[idx] =
idx++;
public synchronized char pop() {
return data[idx];
public static void main(String args[]){
MyStack m = new MyStack();
下面对象m被加锁。严格的说是对象m的所有synchronized块被加锁。
如果存在另一个试图访问m的线程T,那么T无法执行m对象的push和
m.pop();//对象m被加锁。
Java的加锁解锁跟多个人排队等一个公共厕位完全一样。第一个人进去后顺手把门从里面锁住,其它人只好排队等。第一个人结束后出来时,门才会打开(解锁)。轮到第二个人进去,同样他又会把门从里面锁住,其它人继续排队等待。
用厕所理论可以很容易明白: 一个人进了一个厕位,这个厕位就会锁住,但不会导致另一个厕位也被锁住,因为一个人不能同时蹲在两个厕位里。对于Java 就是说:Java中的锁是针对同一个对象的,不是针对class的。看下例:
MyStatck m1 = new MyStack();
MyStatck m2 = new Mystatck();
m1对象的锁是不会影响m2的锁的,因为它们不是同一个厕位。就是说,假设有 3线程t1,t2,t3操作m1,那么这3个线程只可能在m1上排队等,假设另2个线程 t8,t9在操作m2,那么t8,t9只会在m2上等待。而t2和t8则没有关系,即使m2上的锁释放了,t1,t2,t3可能仍要在m1上排队。原因无它,不是同一个厕位耳。
Java不能同时对一个代码块加两个锁,这和数据库锁机制不同,数据库可以对一条记录同时加好几种不同的锁,请参见:
4&何时释放锁?
一般是执行完毕同步代码块(锁住的代码块)后就释放锁,也可以用wait()方式半路上释放锁。wait()方式就好比蹲厕所到一半,突然发现下水道堵住了,不得已必须出来站在一边,好让修下水道师傅(准备执行notify的一个线程)进去疏通马桶,疏通完毕,师傅大喊一声: &已经修好了&(notify),刚才出来的同志听到后就重新排队。注意啊,必须等师傅出来啊,师傅不出来,谁也进不去。也就是说notify后,不是其它线程马上可以进入封锁区域活动了,而是必须还要等notify代码所在的封锁区域执行完毕从而释放锁以后,其它线程才可进入。
这里是wait与notify代码示例:
public synchronized char pop() {
while (buffer.size() == 0) {
this.wait(); //从厕位里出来
} catch (InterruptedException e) {
// ignore it...
c = ((Character)buffer.remove(buffer.size()-1)).
charValue();
public synchronized void push(char c) {
this.notify(); //通知那些wait()的线程重新排队。注意:仅仅是通知它们重新排队。
Character charObj = new Character(c);
buffer.addElement(charObj);
}//执行完毕,释放锁。那些排队的线程就可以进来了。
再深入一些。
由于wait()操作而半路出来的同志没收到notify信号前是不会再排队的,他会在旁边看着这些排队的人(其中修水管师傅也在其中)。注意,修水管的师傅不能插队,也得跟那些上厕所的人一样排队,不是说一个人蹲了一半出来后,修水管师傅就可以突然冒出来然后立刻进去抢修了,他要和原来排队的那帮人公平竞争,因为他也是个普通线程。如果修水管师傅排在后面,则前面的人进去后,发现堵了,就wait,然后出来站到一边,再进去一个,再wait,出来,站到一边,只到师傅进去执行notify. 这样,一会儿功夫,排队的旁边就站了一堆人,等着notify.
终于,师傅进去,然后notify了,接下来呢?
1. 有一个wait的人(线程)被通知到。
2. 为什么被通知到的是他而不是另外一个wait的人?取决于JVM.我们无法预先
判断出哪一个会被通知到。也就是说,优先级高的不一定被优先唤醒,等待
时间长的也不一定被优先唤醒,一切不可预知!(当然,如果你了解该JVM的
实现,则可以预知)。
3. 他(被通知到的线程)要重新排队。
4. 他会排在队伍的第一个位置吗?回答是:不一定。他会排最后吗?也不一定。
但如果该线程优先级设的比较高,那么他排在前面的概率就比较大。
5. 轮到他重新进入厕位时,他会从上次wait()的地方接着执行,不会重新执行。
恶心点说就是,他会接着拉巴巴,不会重新拉。
6. 如果师傅notifyAll(). 则那一堆半途而废出来的人全部重新排队。顺序不可知。
Java DOC 上说,The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object(当前线程释放锁前,唤醒的线程不能去执行)。
这用厕位理论解释就是显而易见的事。
5&Lock的使用
用synchronized关键字可以对资源加锁。用Lock关键字也可以。它是JDK1.5中新增内容。用法如下:
class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull
= lock.newCondition();
final Condition notEmpty = lock.newCondition();
final Object[] items = new Object[100];
int putptr, takeptr,
public void put(Object x) throws InterruptedException {
lock.lock();
while (count == items.length)
notFull.await();
items[putptr] =
if (++putptr == items.length) putptr = 0;
++
notEmpty.signal();
} finally {
lock.unlock();
public Object take() throws InterruptedException {
lock.lock();
while (count == 0)
notEmpty.await();
Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 0;
notFull.signal();
} finally {
lock.unlock();
(注:这是JavaDoc里的例子,是一个阻塞队列的实现例子。所谓阻塞队列,就是一个队列如果满了或者空了,都会导致线程阻塞等待。Java里的 ArrayBlockingQueue提供了现成的阻塞队列,不需要自己专门再写一个了。)
一个对象的lock.lock()和lock.unlock()之间的代码将会被锁住。这种方式比起synchronize好在什么地方?简而言之,就是对wait的线程进行了分类。用厕位理论来描述,则是那些蹲了一半而从厕位里出来等待的人原因可能不一样,有的是因为马桶堵了,有的是因为马桶没水了。通知(notify)的时候,就可以喊:因为马桶堵了而等待的过来重新排队(比如马桶堵塞问题被解决了),或者喊,因为马桶没水而等待的过来重新排队(比如马桶没水问题被解决了)。这样可以控制得更精细一些。不像synchronize里的wait和notify,不管是马桶堵塞还是马桶没水都只能喊:刚才等待的过来排队!假如排队的人进来一看,发现原来只是马桶堵塞问题解决了,而自己渴望解决的问题(马桶没水)还没解决,只好再回去等待(wait),白进来转一圈,浪费时间与资源。
Lock方式与synchronized对应关系:
synchronized
注意:不要在Lock方式锁住的块里调用wait、notify、notifyAll
6&利用管道进行线程间通信
原理简单。两个线程,一个操作PipedInputStream,一个操作 PipedOutputStream。PipedOutputStream写入的数据先缓存在Buffer中,如果 Buffer满,此线程wait。PipedInputStream读出Buffer中的数据,如果Buffer 没数据,此线程wait。
jdk1.5中的阻塞队列可实现同样功能。
例1 这个例子实际上只是单线程,还谈不上线程间通信,但不妨一看。
import java.io.*;
public class PipedStreamTest {
public static void main(String[] args) {
PipedOutputStream ops=new PipedOutputStream();
PipedInputStream pis=new PipedInputStream();
ops.connect(pis);//实现管道连接
new Producer(ops).run();
new Consumer(pis).run();
}catch(Exception e){
e.printStackTrace();
class Producer implements Runnable{
private PipedOutputS
public Producer(PipedOutputStream ops)
public void run()
ops.write(&hell,spell&.getBytes());
ops.close();
}catch(Exception e)
{e.printStackTrace();}
class Consumer implements Runnable{
private PipedInputS
public Consumer(PipedInputStream pis)
public void run()
byte[] bu=new byte[100];
int len=pis.read(bu);
System.out.println(new String(bu,0,len));
pis.close();
}catch(Exception e)
{e.printStackTrace();}
例2 对上面的程序做少许改动就成了两个线程。
import java.io.*;
public class PipedStreamTest {
public static void main(String[] args) {
PipedOutputStream ops=new PipedOutputStream();
PipedInputStream pis=new PipedInputStream();
ops.connect(pis);//实现管道连接
Producer p = new Producer(ops);
new Thread(p).start();
Consumer c = new Consumer(pis);
new Thread(c).start();
}catch(Exception e){
e.printStackTrace();
class Producer implements Runnable{
private PipedOutputS
public Producer(PipedOutputStream ops)
public void run()
ops.write(&hell,spell&.getBytes());
ops.close();
}catch(Exception e)
{e.printStackTrace();}
class Consumer implements Runnable{
private PipedInputS
public Consumer(PipedInputStream pis)
public void run()
byte[] bu=new byte[100];
int len=pis.read(bu);
System.out.println(new String(bu,0,len));
pis.close();
}catch(Exception e)
{e.printStackTrace();}
例3. 这个例子更加贴进应用
import java.io.*;
public class PipedIO { //程序运行后将sendFile文件的内容拷贝到receiverFile文件中
public static void main(String args[]){
try{//构造读写的管道流对象
PipedInputStream pis=new PipedInputStream();
PipedOutputStream pos=new PipedOutputStream();
//实现关联
pos.connect(pis);
//构造两个线程,并且启动。
new Sender(pos,&c:\\text2.txt&).start();
new Receiver(pis,&c:\\text3.txt&).start();
}catch(IOException e){
System.out.println(&Pipe Error&+ e);
//线程发送
class Sender extends Thread{
PipedOutputS
//构造方法
Sender(PipedOutputStream pos, String fileName){
file=new File(fileName);
//线程运行方法
public void run(){
//读文件内容
FileInputStream fs=new FileInputStream(file);
while((data=fs.read())!=-1){
//写入管道始端
pos.write(data);
pos.close();
catch(IOException e) {
System.out.println(&Sender Error& +e);
class Receiver extends Thread{
PipedInputS
//构造方法
Receiver(PipedInputStream pis, String fileName){
file=new File(fileName);
//线程运行
public void run(){
//写文件流对象
FileOutputStream fs=new FileOutputStream(file);
//从管道末端读
while((data=pis.read())!=-1){
//写入本地文件
fs.write(data);
pis.close();
catch(IOException e){
System.out.println(&Receiver Error& +e);
7&阻塞队列
阻塞队列可以代替管道流方式来实现进水管/排水管模式(生产者/消费者).JDK1.5提供了几个现成的阻塞队列. 现在来看ArrayBlockingQueue的代码如下:
这里是一个阻塞队列
BlockingQueue&Object& blockingQ = new ArrayBlockingQueue&Object& 10;
一个线程从队列里取
Object o = blockingQ.take();//队列为空,则等待(阻塞)
另一个线程往队列存
blockingQ.put(new Object());//队列满,则等待(阻塞)
可见,阻塞队列使用起来比管道简单。
8&使用Executors、Executor、ExecutorService、ThreadPoolExecutor
可以使用线程管理任务。还可以使用jdk1.5提供的一组类来更方便的管理任务。从这些类里我们可以体会一种面向任务的思维方式。这些类是:
Executor接口。使用方法:
Executor executor = anE//生成一个Executor实例。
executor.execute(new RunnableTask1());
用意:使用者只关注任务执行,不用操心去关注任务的创建、以及执行细节等这些第三方实现者关心的问题。也就是说,把任务的调用执行和任务的实现解耦。
实际上,JDK1.5中已经有该接口出色的实现。够用了。
Executors是一个如同Collections一样的工厂类或工具类,用来产生各种不同接口的实例。ExecutorService接口它继承自Executor. Executor只管把任务扔进 executor()里去执行,剩余的事就不管了。而ExecutorService则不同,它会多做点控制工作。比如:
class NetworkService {
private final ServerSocket serverS
private final ExecutorS
public NetworkService(int port, int poolSize) throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool(poolSize);
public void serve() {
for (;;) {
pool.execute(new Handler(serverSocket.accept()));
} catch (IOException ex) {
pool.shutdown(); //不再执行新任务
class Handler implements Runnable {
private final S
Handler(Socket socket) { this.socket = }
public void run() {
// read and service request
ExecutorService(也就是代码里的pool对象)执行shutdown后,它就不能再执行新任务了,但老任务会继续执行完毕,那些等待执行的任务也不再等待了。
任务提交者与执行者通讯
public static void main(String args[])throws Exception {
ExecutorService executor = Executors.newSingleThreadExecutor();
Callable&String& task = new Callable&String&(){
public String call()throws Exception{
return &test&;
Future&String& f = executor.submit(task);
String result = f.get();//等待(阻塞)返回结果
System.out.println(result);
executor.shutdown();
Executors.newSingleThreadExecutor()取得的Executor实例有以下特性:
任务顺序执行. 比如:
executor.submit(task1);
executor.submit(task2);
必须等task1执行完,task2才能执行。
task1和task2会被放入一个队列里,由一个工作线程来处理。即:一共有2个线程(主线程、处理任务的工作线程)。
其它的类请参考Java Doc
9&并发流程控制
本节例子来自温少的Java并发教程,可能会有改动。向温少致敬。
CountDownLatch 门插销计数器
启动线程,然后等待线程结束。即常用的主线程等所有子线程结束后再执行的问题。
public static void main(String[] args)throws Exception {
// TODO Auto-generated method stub
final int count=10;
final CountDownLatch completeLatch = new CountDownLatch(count);//定义了门插销的数目是10
for(int i=0;i&i++){
Thread thread = new Thread(&worker thread&+i){
public void run(){
completeLatch.countDown();//减少一根门插销
thread.start();
completeLatch.await();//如果门插销还没减完则等待。
JDK1.4时,常用办法是给子线程设置状态,主线程循环检测。易用性和效率都不好。
启动很多线程,等待通知才能开始
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
final CountDownLatch startLatch = new CountDownLatch(1);//定义了一根门插销
for (int i = 0; i & 10; i++) {
Thread thread = new Thread(&worker thread& + i) {
public void run() {
startLatch.await();//如果门插销还没减完则等待
} catch (InterruptedException e) {
// do xxxx
thread.start();
startLatch.countDown();//减少一根门插销
CycliBarrier. 等所有线程都达到一个起跑线后才能开始继续运行。
public class CycliBarrierTest implements Runnable {
private CyclicB
public CycliBarrierTest(CyclicBarrier barrier) {
this.barrier =
public void run() {
this.barrier.await();//线程运行至此会检查是否其它线程都到齐了,没到齐就继续等待。到齐了就执行barrier的run函数体里的内容
} catch (Exception e) {
* @param args
public static void main(String[] args) {
//参数2代表两个线程都达到起跑线才开始一起继续往下执行
CyclicBarrier barrier = new CyclicBarrier(2, new Runnable() {
public void run() {
Thread t1 = new Thread(new CycliBarrierTest(barrier));
Thread t2 = new Thread(new CycliBarrierTest(barrier));
t1.start();
t2.start();
这简化了传统的用计数器+wait/notifyAll来实现该功能的方式。
10&并发3定律
Amdahl定律. 给定问题规模,可并行化部分占12%,那么即使把并行运用到极致,系统的性能最多也只能提高1/(1-0.12)=1.136倍。即:并行对提高系统性能有上限。Gustafson定律. Gustafson定律说Amdahl定律没有考虑随着cpu的增多而有更多的计算能力可被使用。其本质在于更改问题规模从而可以把Amdahl定律中那剩下的88%的串行处理并行化,从而可以突破性能门槛。本质上是一种空间换时间。Sun-Ni定律. 是前两个定律的进一步推广。其主要思想是计算的速度受限于存储而不是CPU的速度. 所以要充分利用存储空间等计算资源,尽量增大问题规模以产生更好/更精确的解.
11&由并发到并行
计算机识别物体需要飞速的计算,以至于芯片发热发烫,而人在识别物体时却一目了然,却并不会导致某个脑细胞被烧热烧焦(夸张)而感到不适,是由于大脑是一个分布式并行运行系统,就像google用一些廉价的linux服务器可以进行庞大复杂的计算一样,大脑内部无数的神经元的独自计算,互相分享成果,从而瞬间完成需要单个cpu万亿次运算才能有的效果。试想,如果在并行处理领域有所创建,将对计算机的发展和未来产生不可估量的影响。当然,其中的挑战也可想而知:许多的问题是并不容易轻易就“分割”的了的。
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:130087次
积分:1633
积分:1633
排名:第18982名
原创:52篇
转载:12篇
评论:24条
(1)(3)(1)(1)(1)(9)(1)(3)(2)(28)(14)Java并发之线程安全性
Java并发之线程安全性
什么是线程安全?
造成线程安全的因素?
为什么要保证线程安全?
怎么保证线程安全?
什么时候需要线程安全?
什么是线程安全呢?
线程安全性的定义中,最核心的概念就是正确性,如果对线程安全的定义是模糊的,那么就是因为缺乏对正确性的清晰定义。所谓的正确性就是说:某个类的行为与其规范完全一致。在对正确性给出了较为清晰的定义后,就可以定义线程安全性:当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就称这个类时线程安全类。
当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协调,这个类就能表现出正确的行为,那么就称这个类是线程安全的。
造成线程安全的因素?
主要有两点:
共享资源(Shared)
可变资源(Mutable)
为什么要保证线程安全?
其实就一个根本原因:保证各个线程访问的正确性
怎么保证线程安全?
如果当多个线程访问同一个可变的状态变量时没有使用合适的同步,那么线程就会出现错误。有三种方式可以保证安全性:
1.不在线程之前共享该变量的状态
2.将状态变量修改为不可变的变量
3.在访问状态变量时使用同步
什么时候需要线程安全?
一句话概括:
一个对象是否需要时线程安全的,取决于它是否需要被多个线程访问。
其它相关概念:
原子性的操作一定是安全的
public class UnsafeCountingFactorizer implements Servlet{
private long count = 0;
public long getCount(){
return this.
public void service(ServletRequest req, ServletResponse resp){
BigInteger i = extractFromRequest(req);
BigInteger [] factors = factor(i);
encodeIntoResponse(resp,factors);
UnsafeCountingFactorizer 是线程非安全的,尽管它在单线程环境中能够正确的执行。++count看上去是一个紧凑的语法,其实这个操作是非原子操作,它包含三个操作步骤:读取-修改-写入,并且其结果依赖于之前的状态。所有在多线程方式访问下和可能会丢失一些更新操作。
既然多个线程访问共享的资源或者可变资源,那么资源只有一个多个线程访问是必须要有竞争
当某个计算的结果的真确性取决于多个线程的交替执行的时序时,那么就发生竞态条件。
通俗点将就是 正确的结果要按照正确的顺序执行
Java提供了一种内置锁的机制来支持原子性:同步代码块(Synchronized Block)
synchronzied(loc){}
当某个线程请求一个由其他线程持有的锁时,发出请求的线程就会阻塞。然而,由于内置锁时可以重入的,因此如果某个线程试图获得由它自己持有的锁,那么这个请求就会成功
代码示例:
public class Widget{
public synchronzied void doSomething(){
public class LoggingWidget extends Widget{
public synchroinzed void doSomething(){
super.doSomething()
如果内置锁是不可重入的,则上面的代码将发生死锁
1.对于可能被多个线程同时访问的可变状态变量,在访问它时都需要持有同一个锁,在这种情况下,我们称状态变量是由这个锁保护的。
2.每个共享的和可变的变量都应该只由一个锁来保护,从而使维护人员知道是哪一个锁。
3.对于每个包含多个变量的不变性条件,其中涉及的所有变量都需要有同一个锁来保护。
4.当执行时间较长的计算或者可能无法快速完成的操作(例如:网络IO或者控制台IO),一定不要持有锁。
我的热门文章
即使是一小步也想与你分享对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了。而并发问题是绝大部分的程序员头疼的问题,
但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研究一下常见的并发和同步吧。
为了更好的理解并发和同步,我们需要先明白两个重要的概念:同步和异步
&&&1、同步和异步的区别和联系
&  所谓同步,可以理解为在执行完一个函数或方法之后,一直等待系统返回值或消息,这时程序是出于阻塞的,只有接收到
&&&&&&&&返回的值或消息后才往下执行其它的命令。
&&&&&&& 异步,执行完函数或方法后,不必阻塞性地等待返回值或消息,只需要向系统委托一个异步过程,那么当系统接收到返回
&&&&&&& 值或消息时,系统会自动触发委托的异步过程,从而完成一个完整的流程。
&&&&&&&& 同步在一定程度上可以看做是单线程,这个线程请求一个方法后就待这个方法给他回复,否则他不往下执行(死心眼)。
&&&&&&& 异步在一定程度上可以看做是多线程的(废话,一个线程怎么叫异步),请求一个方法后,就不管了,继续执行其他的方法。
   &同步就是一件事,一件事情一件事的做。&&&&&&& 异步就是,做一件事情,不引响做其他事情。
例如:吃饭和说话,只能一件事一件事的来,因为只有一张嘴。& & & & & & & & 但吃饭和听音乐是异步的,因为,听音乐并不引响我们吃饭。
&&&&&&& 对于Java程序员而言,我们会经常听到同步关键字synchronized,假如这个同步的监视对象是类的话,那么如果当一个对象
& & & & 访问类里面的同步方法的话,那么其它的对象如果想要继续访问类里面的这个同步方法的话,就会进入阻塞,只有等前一个对象
& & & & 执行完该同步方法后当前对象才能够继续执行该方法。这就是同步。相反,如果方法前没有同步关键字修饰的话,那么不同的对象
& & & & 可以在同一时间访问同一个方法,这就是异步。
&&&&&&& 在补充一下(脏数据和不可重复读的相关概念):
&&&&&&&脏数据
  脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这
个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是脏数据(Dirty Data),依据脏数据所做的操作可能是不正确的。
&  不可重复读
  不可重复读是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读
&2、如何处理并发和同步
& & & &&今天讲的如何处理并发和同同步问题主要是通过锁机制。
& & & &我们需要明白,锁机制有两个层面。
& & & &一种是代码层次上的,如java中的同步锁,典型的就是同步关键字synchronized,这里我不在做过多的讲解,
& & & &感兴趣的可以参考:
& & & &另外一种是数据库层次上的,比较典型的就是悲观锁和乐观锁。这里我们重点讲解的就是悲观锁(传统的物理锁)和乐观锁。
& & & &悲观锁(Pessimistic Locking):&&& & &
& & & &悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自&外部系统的事务处理)修改持保守态度,因此,
& & & &在整个数据处理过程中,将数据处于锁定状态。
& & & &悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能&真正保证数据访问的排他性,否则,即使在本系统
& & & &中实现了加锁机制,也无法保证外部系&统不会修改数据)。&
& & & &一个典型的倚赖数据库的悲观锁调用:&
& & & &select * from account where name=&Erica& for update
& & & &这条 sql 语句锁定了 account 表中所有符合检索条件( name=&Erica& )的记录。
& & & &本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。&& & & &Hibernate 的悲观锁,也是基于数据库的锁机制实现。&& & & &下面的代码实现了对查询记录的加锁:
& & & &String hqlStr ="from TUser as user where user.name='Erica'";
& & & & Query query = session.createQuery(hqlStr);
& &&& & query.setLockMode("user",LockMode.UPGRADE); // 加锁
& &&& &List userList = query.list();// 执行查询,获取数据
& & & &query.setLockMode 对查询语句中,特定别名所对应的记录进行加锁(我们为&TUser 类指定了一个别名 &user& ),这里也就是对
& & & 返回的所有 user 记录进行加锁。&
& & & 观察运行期 Hibernate 生成的 SQL 语句:&& & & select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id& & & as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex& & & from t_user tuser0_ where (tuser0_.name='Erica' ) for update& & &这里 Hibernate 通过使用数据库的 for update 子句实现了悲观锁机制。&& & & Hibernate 的加锁模式有:&& & & &O LockMode.NONE : 无锁机制。&& & & &O LockMode.WRITE : Hibernate 在 Insert 和 Update 记录的时候会自动获取& & & &O LockMode.READ : Hibernate 在读取记录的时候会自动获取。&& & & 以上这三种锁机制一般由 Hibernate 内部使用,如 Hibernate 为了保证 Update& & & 过程中对象不会被外界修改,会在 save 方法实现中自动为目标对象加上 WRITE 锁。&& & & &O LockMode.UPGRADE :利用数据库的 for update 子句加锁。&& & & &O LockMode. UPGRADE_NOWAIT : Oracle 的特定实现,利用 Oracle 的 for& & & update nowait 子句实现加锁。&& & & 上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现:&& & & Criteria.setLockMode& & & Query.setLockMode& & & Session.lock& & & 注意,只有在查询开始之前(也就是 Hiberate 生成 SQL 之前)设定加锁,才会&& & & 真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含 for update& & & 子句的 Select SQL 加载进来,所谓数据库加锁也就无从谈起。
& & & 为了更好的理解select... for update的锁表的过程,本人将要以mysql为例,进行相应的讲解
& & & 1、要测试锁定的状况,可以利用MySQL的Command Mode ,开二个视窗来做测试。
& & & & & 表的基本结构如下:
& & & & &&
& & & & &&&表中内容如下:
& & & & & &
& & & & & 开启两个测试窗口,在其中一个窗口执行select * from ta for update0
& & & & & 然后在另外一个窗口执行update操作如下图:
& & & & &&
& & & & & 等到一个窗口commit后的图片如下:
& & & & &&
& & & & & &到这里,悲观锁机制你应该了解一些了吧~
& & & & & &需要注意的是for update要放到mysql的事务中,即begin和commit中,否者不起作用。
& & & & & &至于是锁住整个表还是锁住选中的行,请参考:
& & & & & &
&&&&&&&&&& &至于hibernate中的悲观锁使用起来比较简单,这里就不写demo了~感兴趣的自己查一下就ok了~
& & & & & &
&&&&&&&& &乐观锁(Optimistic Locking):&&&&&&&&&&&&&&&& 相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依&靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之
而来的就是数据库&性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。&如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数
据的基础上进&行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过&程中(从操作员读出数据、开始修改直至提交修改结果的全
过程,甚至还包括操作&员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几&百上千个并发,这样的情况将导致怎样的后果。&乐
观锁机制在一定程度上解决了这个问题。
&&&&&&&& 乐观锁,大多是基于数据版本&& Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通
过为数据库表增加一个 &version& 字段来&实现。&读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提&交数据的版本数据与数据
库表对应记录的当前版本信息进行比对,如果提交的数据&版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。对于上面修改用户帐户信息
的例子而言,假设数据库中帐户信息表中有一个&version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。操作员 A 此时将其读出
( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。&2 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并&从其帐
户余额中扣除 $20 ( $100-$20 )。&3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣&除后余额( balance=$50 ),提交
至数据库更新,此时由于提交数据版本大&于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。&4 操作员 B 完成了操作,也将版本号加一
( version=2 )试图向数据库提交数&据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的&数据版本号为 2 ,数据库记录当前版
本也为 2 ,不满足 & 提交版本必须大于记&录当前版本才能执行更新 & 的乐观锁策略,因此,操作员 B 的提交被驳回。&这样,就避免了操作员 B 用基于
version=1 的旧数据修改的结果覆盖操作&员 A 的操作结果的可能。&从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A
和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系&统整体性能表现。&需要注意的是,乐观锁机制往往基于系统中的数据存储
逻辑,因此也具备一定的局&限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户&余额更新操作不受我们系统的控制,因此可能
会造成脏数据被更新到数据库中。在&系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如&将乐观锁策略在数据库存储过程中实
现,对外只开放基于此存储过程的数据更新途&径,而不是将数据库表直接对外公开)。&Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外
部系统对数&据库的更新操作,利用 Hibernate 提供的透明化乐观锁实现,将大大提升我们的&生产力。
User.hbm.xml
&?xml version="1.0"?&
&!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"&
&hibernate-mapping package="com.xiaohao.test"&
&class name="User"
table="user" optimistic-lock="version" &
&id name="id"&
&generator class="native" /&
&!--version标签必须跟在id标签后面--&
&version column="version" name="version"
&property name="userName"/&
&property name="password"/&
&/hibernate-mapping&
注意 version 节点必须出现在 ID 节点之后。&这里我们声明了一个 version 属性,用于存放用户的版本信息,保存在 User 表的version中&optimistic-lock 属性有如下可选取值:&&O none无乐观锁&&O version通过版本机制实现乐观锁&&O dirty通过检查发生变动过的属性实现乐观锁&&O all通过检查所有属性实现乐观锁&其中通过 version 实现的乐观锁机制是 Hibernate 官方推荐的乐观锁实现,同时也&是 Hibernate 中,目前唯一在数据对象脱离 Session 发生修改的情况下依然有效的锁机&制。因此,一般情况下,我们都选择 version 方式作为 Hibernate 乐观锁实现机制。
2 . 配置文件hibernate.cfg.xml和UserTest测试类
&& hibernate.cfg.xml
&!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"&
&hibernate-configuration&
&session-factory&
&!-- 指定数据库方言 如果使用jbpm的话,数据库方言只能是InnoDB--&
&property name="dialect"&org.hibernate.dialect.MySQL5InnoDBDialect&/property&
&!-- 根据需要自动创建数据表 --&
&property name="hbm2ddl.auto"&update&/property&
&!-- 显示Hibernate持久化操作所生成的SQL --&
&property name="show_sql"&true&/property&
&!-- 将SQL脚本进行格式化后再输出 --&
&property name="format_sql"&false&/property&
&property name="current_session_context_class"&thread&/property&
&!-- 导入映射配置 --&
&property name="connection.url"&jdbc:mysql:///user&/property&
&property name="connection.username"&root&/property&
&property name="connection.password"&123456&/property&
&property name="connection.driver_class"&com.mysql.jdbc.Driver&/property&
&mapping resource="com/xiaohao/test/User.hbm.xml" /&
&/session-factory&
&/hibernate-configuration&
UserTest.java
package com.xiaohao.
import org.hibernate.S
import org.hibernate.SessionF
import org.hibernate.T
import org.hibernate.cfg.C
public class UserTest {
public static void main(String[] args) {
Configuration conf=new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session session=sf.getCurrentSession();
Transaction tx=session.beginTransaction();
User user=new User("小浩","英雄");
session.save(user);
session.createSQLQuery("insert into user(userName,password) value('张英雄16','123')")
.executeUpdate();
User user=(User) session.get(User.class, 1);
user.setUserName("221");
session.save(user);
System.out.println("恭喜您,用户的数据插入成功了哦~~");
tx.commit();
每次对 TUser 进行更新的时候,我们可以发现,数据库中的 version 都在递增。
下面我们将要通过乐观锁来实现一下并发和同步的测试用例:
这里需要使用两个测试类,分别运行在不同的虚拟机上面,以此来模拟多个用户同时操作一张表,同时其中一个测试类需要模拟长事务
UserTest.java
package com.xiaohao.
import org.hibernate.S
import org.hibernate.SessionF
import org.hibernate.T
import org.hibernate.cfg.C
public class UserTest {
public static void main(String[] args) {
Configuration conf=new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session session=sf.openSession();
Session session2=sf.openSession();
User user=(User) session.createQuery(" from User user where user=5").uniqueResult();
User user2=(User) session.createQuery(" from User user where user=5").uniqueResult();
System.out.println(user.getVersion());
System.out.println(user2.getVersion());
Transaction tx=session.beginTransaction();
user.setUserName("101");
tx.commit();
System.out.println(user.getVersion());
System.out.println(user2.getVersion());
System.out.println(user.getVersion()==user2.getVersion());
Transaction tx2=session2.beginTransaction();
user2.setUserName("4468");
UserTest2.java
package com.xiaohao.
import org.hibernate.S
import org.hibernate.SessionF
import org.hibernate.T
import org.hibernate.cfg.C
public class UserTest2 {
public static void main(String[] args) throws InterruptedException {
Configuration conf=new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session session=sf.openSession();
Session session2=sf.openSession();
User user=(User) session.createQuery(" from User user where user=5").uniqueResult();
Thread.sleep(10000);
User user2=(User) session.createQuery(" from User user where user=5").uniqueResult();
System.out.println(user.getVersion());
System.out.println(user2.getVersion());
Transaction tx=session.beginTransaction();
user.setUserName("100");
tx.commit();
System.out.println(user.getVersion());
System.out.println(user2.getVersion());
System.out.println(user.getVersion()==user2.getVersion());
Transaction tx2=session2.beginTransaction();
user2.setUserName("4468");
操作流程及简单讲解: 首先启动UserTest2.java测试类,在执行到Thread.sleep(10000);这条语句的时候,当前线程会进入睡眠状态。在10秒钟之内
&&&&&&&&&&&&&&&&&&&&&&&&&&& 启动UserTest这个类,在到达10秒的时候,我们将会在UserTest.java中抛出下面的异常:
Exception in thread "main" org.hibernate.StaleObjectStateException: Row was updated or deleted by another transaction (or unsaved-value mapping was incorrect): [com.xiaohao.test.User#5]
at org.hibernate.persister.entity.AbstractEntityPersister.check(AbstractEntityPersister.java:1932)
at org.hibernate.persister.entity.AbstractEntityPersister.update(AbstractEntityPersister.java:2576)
at org.hibernate.persister.entity.AbstractEntityPersister.updateOrInsert(AbstractEntityPersister.java:2476)
at org.hibernate.persister.entity.AbstractEntityPersister.update(AbstractEntityPersister.java:2803)
at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:113)
at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273)
at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265)
at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185)
at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321)
at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51)
at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216)
at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383)
at org.hibernate.mit(JDBCTransaction.java:133)
at com.xiaohao.test.UserTest2.main(UserTest2.java:21)
&UserTest2代码将在 tx.commit() 处抛出 StaleObjectStateException 异&常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我&们就可以在乐观锁校验失败时进行相应处理
&3、常见并发同步案例分析
&&& 案例一:订票系统案例,某航班只有一张机票,假定有1w个人打开你的网站来订票,问你如何解决并发问题(可扩展到任何高并发网站要考虑
&&&&&&&&&&&&&& 的并发读写问题)
&&& 问题,1w个人来访问,票没出去前要保证大家都能看到有票,不可能一个人在看到票的时候别人就不能看了。到底谁能抢到,那得看这个人的&运气&(网
&&&&&&&&&&&& 络快慢等)
其次考虑的问题,并发,1w个人同时点击购买,到底谁能成交?总共只有一张票。
首先我们容易想到和并发相关的几个方案 :
锁同步同步更多指的是应用程序的层面,多个线程进来,只能一个一个的访问,java中指的是syncrinized关键字。锁也有2个层面,一个是java中谈到的对
象锁,用于线程同步;另外一个层面是数据库的锁;如果是分布式的系统,显然只能利用数据库端的锁来实现。
假定我们采用了同步机制或者数据库物理锁机制,如何保证1w个人还能同时看到有票,显然会牺牲性能,在高并发网站中是不可取的。使用hibernate后我们
提出了另外一个概念:乐观锁、悲观锁(即传统的物理锁);
采用乐观锁即可解决此问题。乐观锁意思是不锁定表的情况下,利用业务的控制来解决并发问题,这样即保证数据的并发可读性又保证保存数据的排他性,保
证性能的同时解决了并发带来的脏数据问题。
hibernate中如何实现乐观锁:
前提:在现有表当中增加一个冗余字段,version版本号, long类型
1)只有当前版本号》=数据库表版本号,才能提交
2)提交成功后,版本号version ++
实现很简单:在ormapping增加一属性optimistic-lock="version"即可,以下是样例片段
&hibernate-mapping&
&class name="com.insigma.stock.ABC"&optimistic-lock="version"&table="T_Stock" schema="STOCK"&
案例二、股票交易系统、银行系统,大数据量你是如何考虑的
首先,股票交易系统的行情表,每几秒钟就有一个行情记录产生,一天下来就有(假定行情3秒一个) 股票数量&20&60*6 条记录,一月下来这个表记录数
量多大? oracle中一张表的记录数超过100w后 查询性能就很差了,如何保证系统性能?
再比如,中国移动有上亿的用户量,表如何设计?把所有用于存在于一个表么?
所以,大数量的系统,必须考虑表拆分-(表名字不一样,但是结构完全一样),通用的几种方式:(视情况而定)
1)按业务分,比如 手机号的表,我们可以考虑 130开头的作为一个表,131开头的另外一张表 以此类推
2)利用oracle的表拆分机制做分表
3)如果是交易系统,我们可以考虑按时间轴拆分,当日数据一个表,历史数据弄到其它表。这里历史数据的报表和查询不会影响当日交易。
当然,表拆分后我们的应用得做相应的适配。单纯的or-mapping也许就得改动了。比如部分业务得通过存储过程等
此外,我们还得考虑缓存
这里的缓存,指的不仅仅是hibernate,hibernate本身提供了一级二级缓存。这里的缓存独立于应用,依然是内存的读取,假如我们能减少数据库频繁的访
问,那对系统肯定大大有利的。比如一个电子商务系统的商品搜索,如果某个关键字的商品经常被搜,那就可以考虑这部分商品列表存放到缓存(内存中
去),这样不用每次访问数据库,性能大大增加。
简单的缓存大家可以理解为自己做一个hashmap,把常访问的数据做一个key,value是第一次从数据库搜索出来的值,下次访问就可以从map里读取,而不
读数据库;专业些的目前有独立的缓存框架比如memcached 等,可独立部署成一个缓存服务器。
4、常见的提高高并发下访问的效率的手段
&&&&& 首先要了解高并发的的瓶颈在哪里?
&&&& 1、可能是服务器网络带宽不够
&&&& 2.可能web线程连接数不够
&&&&&3.可能数据库连接查询上不去。
&&&& 根据不同的情况,解决思路也不同。
像第一种情况可以增加网络带宽,DNS域名解析分发多台服务器。
负载均衡,前置代理服务器nginx、apache等等
数据库查询优化,读写分离,分表等等
&& 最后复制一些在高并发下面需要常常需要处理的内容:
尽量使用缓存,包括用户缓存,信息缓存等,多花点内存来做缓存,可以大量减少与数据库的交互,提高性能。
用jprofiler等工具找出性能瓶颈,减少额外的开销。
优化数据库查询语句,减少直接使用hibernate等工具的直接生成语句(仅耗时较长的查询做优化)。
优化数据库结构,多做索引,提高查询效率。
统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能。
能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)。
解决以上问题后,使用服务器集群来解决单台的瓶颈问题。
java高并发,如何解决,什么方式解决
之前我将高并发的解决方法误认为是线程或者是队列可以解决,因为高并发的时候是有很多用户在访问,导致出现系统数据不正确、丢失数据现象,所以想到 的是用队列解决,其实队列解决的方式也可以处理,比如我们在竞拍商品、转发评论微博或者是秒杀商品等,同一时间访问量特别大,队列在此起到特别的作用,将 所有请求放入队列,以毫秒计时单位,有序的进行,从而不会出现数据丢失系统数据不正确的情况。
今天我经过查资料,高并发的解决方法有俩种:
一种是使用缓存、另一种是使用生成静态页面;还有就是从最基础的地方优化我们写代码减少不必要的资源浪费:(
1.不要频繁的new对象,对于在整个应用中只需要存在一个实例的类使用单例模式.对于String的连接操作,使用StringBuffer或者StringBuilder.对于utility类型的类通过静态方法来访问。
2. 避免使用错误的方式,如Exception可以控制方法推出,但是Exception要保留stacktrace消耗性能,除非必要不要使用 instanceof做条件判断,尽量使用比的条件判断方式.使用JAVA中效率高的类,比如ArrayList比Vector性能好。)
首先缓存技术我一直没有使用过,我觉得应该是在用户请求时将数据保存在缓存中,下次请求时会检测缓存中是否有数据存在,防止多次请求服务器,导致服务器性能降低,严重导致服务器崩溃,这只是我自己的理解,详细的资料还是需要在网上收集;
使用生成静态页面我想大家应该不模式,我们见过很多网站当在请求的时候页面的后最已经变了,如&该页面其实是一个服务器请求地址,在转换成htm后,访问速度将提升,因为静态页面不带有服务器组件;在这里我就多多介绍一下:
一、什么是页面静态化:
简 单的说,我们如果访问一个链接 ,服务器对应的模块会处理这个请求,转到对应的jsp界面,最后生成我们想要看到的数据。这其中的缺点是显而易见的:因为每次请求服务器都会进行处理,如 果有太多的高并发请求,那么就会加重应用服务器的压力,弄不好就把服务器 搞down 掉了。那么如何去避免呢?如果我们把对 test.do 请求后的结果保存成一个 html 文件,然后每次用户都去访问 ,这样应用服务器的压力不就减少了?
那么静态页面从哪里来呢?总不能让我们每个页面都手动处理吧?这里就牵涉到我们要讲解的内容了,静态页面生成方案& 我们需要的是自动的生成静态页面,当用户访问 ,会自动生成 test.html ,然后显示给用户。
二、下面我们在简单介绍一下要想掌握页面静态化方案应该掌握的知识点:
1、 基础- URL Rewrite
什么是 URL Rewrite 呢 ? URL 重写。用一个简单的例子来说明问题:输入网址 ,但是实际上访问的却是 /test.action,那我们就可以说 URL 被重写了。这项技术应用广泛,有许多开源的工具可以实现这个功能。
2、 基础- Servlet web.xml
如果你还不知道 web.xml 中一个请求和一个 servlet 是如何匹配到一起的,那么请搜索一下 servlet 的文档。这可不是乱说呀,有很多人就认为 /xyz/*.do 这样的匹配方式能有效。
如果你还不知道怎么编写一个 servlet ,那么请搜索一下如何编写 servlet.这可不是说笑呀,在各种集成工具漫天飞舞的今天,很多人都不会去从零编写一个 servlet了。
三、基本的方案介绍
其中,对于 URL Rewriter的部分,可以使用收费或者开源的工具来实现,如果 url不是特别的复杂,可以考虑在 servlet 中实现,那么就是下面这个样子:
总 结:其实我们在开发中都很少考虑这种问题,直接都是先将功能实现,当一个程序员在干到1到2年,就会感觉光实现功能不是最主要的,安全性能、质量等等才是 一个开发人员最该关心的。今天我所说的是高并发。
我的解决思路是:
1、采用分布式应用设计
2、分布式缓存数据库
3、代码优化
Java高并发的例子:
????????????????????????????????????????????????????????????????????????????????????
具体情况是这样:&通过java和数据库,自己实现序列自动增长。实现代码大致如下:&id_table表结构,&主要字段:
varchar2(16);
number(16,0);
varchar2(4);
public synchronized String nextStringValue(String id){
SqlSession sqlSess = SqlSessionUtil.getSqlSession();
sqlSess.update("update id_table set id_val = id_val + 1 where id_name="+id);
Map map = sqlSess.getOne("select id_name, id_prefix, id_val from id_table where id_name="+ id);
BigDecimal val = (BigDecimal) map.get("id_val");
//id_val是具体数字,rePack主要是统一返回固定长度的字符串;如:Y0000001, F0000001, T0000001等
String idValue = rePack(val, map);
return idV
//公共方法
public class IdHelpTool{
public static String getNextStringValue(String idName){
return getXX().nextStringValue(idName);
具体使用者,都是通过类似这种方式:IdHelpTool.getNextStringValue("PAY_LOG");来调用。问题:&&&&&&(1)&当出现并发时,&有时会获取重复的ID;&&&&&&(2)&由于服务器做了相关一些设置,有时调用这个方法,好像还会导致超时。&&&&&&&&&为了解决问题(1),&考虑过在方法getNextStringValue上,也加上synchronized&,&同步关键字过多,会不会更导致超时?跪求大侠提供个解决问题的大概思路!!!
????????????????????????????????????????????????????????????????????????????????????
解决思路一:
1、推荐&/adyliu/idcenter2、可以通过第三方redis来实现。
解决思路一:
1、出现重复ID,是因为脏读了,并发的时候不加&synchronized&&比如会出现问题2、但是加了&synchronized&&,性能急剧下降了,本身&java&就是多线程的,你把它单线程使用,不是明智的选择,同时,如果分布式部署的时候,加了&synchronized&&也无法控制并发3、调用这个方法,出现超时的情况,说明你的并发已经超过了数据库所能处理的极限,数据库无限等待导致超时基于上面的分析,建议采用线程池的方案,支付宝的单号就是用的线程池的方案进行的。数据库&update&不是一次加1,而是一次加几百甚至上千,然后取到的这&1000个序号,放在线程池里慢慢分配即可,能应付任意大的并发,同时保证数据库没任何压力。
????????????????????????????????????????????????????????????????????????????????????
阅读(...) 评论()

我要回帖

更多关于 java多线程并发执行 的文章

 

随机推荐