论述膜的主要硫化氢的理化特性性及其影响因素

请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
检索详情页
{"words":"$head_words:工业废水+$head_words:\\ 膜生物反应器+$head_words:\\ 金属离子+$head_words:\\ 微生物+$head_words:\\ 群落结构","themeword":"$head_words","params":"$title:金属离子对膜生物反应器中微生物群落结构的影响"}
&&&金属离子对膜生物反应器中微生物群落结构的影响
金属离子对膜生物反应器中微生物群落结构的影响
<input type="hidden" class="share_summary"
value="膜生物反应器(Membrane Bioreactor,MBR)是将传统沉淀法与滤膜有机结合的一类新型的水处理反应器,作为一种新型高效的污水处理及中水回用技术备受关注,而膜污染是膜生物反应器(MBR)推广应用的瓶颈。研究显示,不同价态和浓度的金属离子对膜污染存在不同的影响,现有研究基本上是通过监测与膜污染相关的微生物胞外聚合物(EPS)、溶解性微生物产物(SMP)等理化性质来分析金属离子对膜污染的影响过程及其机制,研究结果存在诸多争议。本试验从微生物生态学角度出发,将基于新一代高通量测序的环境微生物分析技术(Illumina测序技术)与EPS和SMP组成及含量、出水水质等传统分析技术相结合,研究不同价态和浓度的金属离子(Na+、C2+、Mg2+、Fe3+、Al3+)对MBR中微生物群落结构组成的影响,阐述金属离子通过影响微生物群落结构和生理特征来改变微生物代谢产物含量及膜污染进程的微生物生态学机制。主要的结论如下:  (1)添加一价金属(Na+)的膜生物反应器在运行过程中,Na+加快了膜污染的速率。综合环境因素与微生物生态演化的相关分析显示,膜污染与微生物群落结构存在显著的相关性。盐度会影响污泥群落组成,高盐使得微生物群落多样性下降,而且不同的盐度MBR的样品的群落结构和多样性都不相同。在属的水平上,一些高耐盐属随盐度的增加而增加。这些属可能会代谢产生糖类来调节渗透压以克服盐冲击。EPS和SMP中多糖随着耐高盐属比例的增加而浓度增高。多糖浓度的升高加剧了膜污染。  (2)添加二价金属,即硬度金属(Ca2+、Mg2+)的膜生物反应器在运行过程中,Ca2+,Mg2+在一定程度上减缓了膜污染。但是综合环境因素和微生物群落结构分析,未发现微生物群落结构与膜污染存在相关性。这表示Ca2+,Mg2+主要是通过二价阳离子的架桥作用,增加了活性污泥的絮凝性,从而从物理化学上减缓了滤饼的形成速率,最终影响了膜污染的速度。  (3)添加三价金属,即水解金属(Fe3+、Al3+)的膜生物反应器在运行过程中,Fe3+、Al3+作为混凝剂,有效的降低了膜污染进程。其中Fe3+的效果较Al3+更明显。综合考虑环境因素和微生物群落结构的变化,结果显示膜污染速率与微生物群落的演化存在显著相关性。从门和属水平分析,都看出Fe3+、Al3+导致了某些微生物的比例增加或是降低。所以,Fe3+、Al3+对膜污染的缓解,不仅是增强了混凝作用,减缓滤饼形成速率。它们也改变了微生物群落整体的代谢,使EPS和SMP的浓度发生变化,最终影响了膜污染进程。  综上所述,本实验将污泥的微生物群落结构与MBR工艺中出水水质、EPS和SMP组成及含量、污泥特性、膜污染速率等结果相结合分析,结果显示盐类金属(Na+)对群落结构会产生影响,且与膜污染有相关性。硬度金属(Ca2+、Mg2+)可以对微生物产生影响,但与膜污染未见显著相关性。水解金属(Fe3+、Al3+)能够影响污泥絮凝,且对生物群落的影响与膜污染有显著相关。对MBR中微生物群落结构和与EPS、SMP分泌相关的生物学通路的影响,结合EPS、SMP和膜污染速率等理化分析结果,进一步阐述不同种类和价态金属离子影响膜污染进程的微生物生态学机制。结果可为高盐工业废水MBR处理工艺调控及MBR工艺中无机絮凝剂的添加策略提供科学依据。"/>
膜生物反应器(Membrane Bioreactor,MBR)是将传统沉淀法与滤膜有机结合的一类新型的水处理反应器,作为一种新型高效的污水处理及中水回用技术备受关注,而膜污染是膜生物反应器(MBR)推广应用的瓶颈。研究显示,不同价态和浓度的金属离子对膜污染存在不同的影响,现有研究基本上是通过监测与膜污染相关的微生物胞外聚合物(EPS)、溶解性微生物产物(SMP)等理化性质来分析金属离子对膜污染的影响过程及其机制,研究结果存在诸多争议。本试验从微生物生态学角度出发,将基于新一代高通量测序的环境微生物分析技术(Illumina测序技术)与EPS和SMP组成及含量、出水水质等传统分析技术相结合,研究不同价态和浓度的金属离子(Na+、C2+、Mg2+、Fe3+、Al3+)对MBR中微生物群落结构组成的影响,阐述金属离子通过影响微生物群落结构和生理特征来改变微生物代谢产物含量及膜污染进程的微生物生态学机制。主要的结论如下:  (1)添加一价金属(Na+)的膜生物反应器在运行过程中,Na+加快了膜污染的速率。综合环境因素与微生物生态演化的相关分析显示,膜污染与微生物群落结构存在显著的相关性。盐度会影响污泥群落组成,高盐使得微生物群落多样性下降,而且不同的盐度MBR的样品的群落结构和多样性都不相同。在属的水平上,一些高耐盐属随盐度的增加而增加。这些属可能会代谢产生糖类来调节渗透压以克服盐冲击。EPS和SMP中多糖随着耐高盐属比例的增加而浓度增高。多糖浓度的升高加剧了膜污染。  (2)添加二价金属,即硬度金属(Ca2+、Mg2+)的膜生物反应器在运行过程中,Ca2+,Mg2+在一定程度上减缓了膜污染。但是综合环境因素和微生物群落结构分析,未发现微生物群落结构与膜污染存在相关性。这表示Ca2+,Mg2+主要是通过二价阳离子的架桥作用,增加了活性污泥的絮凝性,从而从物理化学上减缓了滤饼的形成速率,最终影响了膜污染的速度。  (3)添加三价金属,即水解金属(Fe3+、Al3+)的膜生物反应器在运行过程中,Fe3+、Al3+作为混凝剂,有效的降低了膜污染进程。其中Fe3+的效果较Al3+更明显。综合考虑环境因素和微生物群落结构的变化,结果显示膜污染速率与微生物群落的演化存在显著相关性。从门和属水平分析,都看出Fe3+、Al3+导致了某些微生物的比例增加或是降低。所以,Fe3+、Al3+对膜污染的缓解,不仅是增强了混凝作用,减缓滤饼形成速率。它们也改变了微生物群落整体的代谢,使EPS和SMP的浓度发生变化,最终影响了膜污染进程。  综上所述,本实验将污泥的微生物群落结构与MBR工艺中出水水质、EPS和SMP组成及含量、污泥特性、膜污染速率等结果相结合分析,结果显示盐类金属(Na+)对群落结构会产生影响,且与膜污染有相关性。硬度金属(Ca2+、Mg2+)可以对微生物产生影响,但与膜污染未见显著相关性。水解金属(Fe3+、Al3+)能够影响污泥絮凝,且对生物群落的影响与膜污染有显著相关。对MBR中微生物群落结构和与EPS、SMP分泌相关的生物学通路的影响,结合EPS、SMP和膜污染速率等理化分析结果,进一步阐述不同种类和价态金属离子影响膜污染进程的微生物生态学机制。结果可为高盐工业废水MBR处理工艺调控及MBR工艺中无机絮凝剂的添加策略提供科学依据。
摘要: 膜生物反应器(Membrane Bioreactor,MBR)是将传统沉淀法与滤膜有机结合的一类新型的水处理反应器,作为一种新型高效的污水处理及中水回用技术备受关注,而膜污染是膜生物反应器(MBR)推广应用的瓶颈。研究显示,不同价态和浓度的金属离子对膜污染存在不同的影响,现有研究基本上是通过监测与膜污染相关的微生物胞外聚合物(EPS)、溶解性微生物产物(SM...&&
相关论文(与本文研究主题相同或者相近的论文)
同项目论文(和本文同属于一个基金项目成果的论文)
您可以为文献添加知识标签,方便您在书案中进行分类、查找、关联
请输入添加的标签
万方数据知识服务平台--国家科技支撑计划资助项目(编号:2006BAH03B01)
&北京万方数据股份有限公司 万方数据电子出版社
实名学术社交
个性化订阅推荐
快速查看收藏过的文献> 问题详情
下列关于药物的理化性质影响直肠吸收的因素叙述正确的是A.脂溶性、解离型药物容易透过类脂细胞膜B
悬赏:0&答案豆
发布时间:
下列关于药物的理化性质影响直肠吸收的因素叙述正确的是A.脂溶性、解离型药物容易透过类脂细胞膜B.弱碱性药物易于被直肠黏膜吸收C.酸性药物可被直肠黏膜迅速吸收D.粒径越小,吸收越快E.溶解度小的药物,因在直肠中溶解的少,吸收较少,溶解成为吸收的限速过程此题为多项选择题。请帮忙给出正确答案和分析,谢谢!
为您推荐的考试题库
您可能感兴趣的试题
1软膏制备的方法有A.研和法B.塑制法C.乳化法D.聚合法E.熔融法2关于包合物描述正确的是A.一种分子被包嵌于另一种分子的孔穴结构内形成包合物B.包合过程是化学过程C.主分子具有较大的孔穴结构D.客分子尺寸必须和主分子的孔穴形状和大小相适应E.包合物为客分子被包嵌于主分子的孔穴结构内形成的分子胶囊3下列关于小丸(微丸)的叙述,哪些是正确的A.微丸系指由药物与辅料构成的直径小于0.5mm的球状实体B.中药丸剂制成微丸是中药丸剂剂型改革的一条有效途径C.微丸的制备方法目前主要采用沸腾制粒法、离心制粒法等方法D.可根据不同需要制成快速或缓释的微丸E.要想使微丸释药速度减慢,可采用丸外包衣的方法4制备滴丸常选用的脂溶性基质有A.硬脂酸B.聚乙二醇C.甘油明胶D.单硬脂酸甘油酯E.硬脂酸钠
我有更好的答案
请先输入下方的验证码查看最佳答案
图形验证:
验证码提交中……
每天只需0.4元
选择支付方式
支付宝付款
郑重提醒:支付后,系统自动为您完成注册
请使用微信扫码支付(元)
支付后,系统自动为您完成注册
遇到问题请联系在线客服QQ:
恭喜你被选中为
扫一扫-免费查看答案!
请您不要关闭此页面,支付完成后点击支付完成按钮
遇到问题请联系在线客服QQ:
恭喜您!升级VIP会员成功
提示:请截图保存您的账号信息,以方便日后登录使用。
常用邮箱:
用于找回密码
确认密码:不同浓度苹果多酚对壳聚糖复合膜液理化性质的影响
中国农业科学
| & &| && | &加入收藏
: &&&&DOI: 10.3864/j.issn.18.14.016
食品科学与工程
不同浓度苹果多酚对壳聚糖复合膜液理化性质的影响
梁迪,杨曦,郭玉蓉
陕西师范大学食品工程与营养科学学院,西安 710119
Effects of Different Concentrations of Apple Polyphenols on the Physicochemical Properties of Chitosan Membrane Fluids
LIANG Di, YANG Xi, GUO YuRong
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
参考文献(49)
(1081 KB) &
摘要&【目的】以5%(w/v)的壳聚糖(chitosan)溶液和苹果多酚(apple polyphenols,AP)为原料制备一种复合膜液,研究不同多酚添加量对复合膜液抗氧化活性、流变特性及稳定性的影响,以期制备性能良好的可食液体涂膜,为食品保鲜提供理论依据及技术参考。【方法】以浓度为5%的壳聚糖溶液为基质,通过添加苹果多酚,分别制备多酚含量为0.5%、1.0%、1.5%的复合膜液。同时以不添加多酚的膜液作对照。采用磁力搅拌将多酚均匀分散于膜液体系后,对膜液DPPH自由基清除能力、脂质氧化抑制能力、总还原力及OH自由基清除能力进行测定。采用AR-G2流变仪研究不同苹果多酚添加量对复合膜液剪切流变特性的影响。同时采用红外光谱(fourier transform infrared spectrum, FTIR)和X射线衍射(X-ray diffraction)对复合膜液体系中的分子间作用力和晶体结构进行表征。此外,采用Q600SDT热分析系统在50℃&400℃范围内对复合膜液样品进行热稳定性分析。【结果】苹果多酚可显著提高复合膜液的抗氧化活性(P<0.01),且随苹果多酚添加量增加,复合膜液抗氧化活性也随之增加。当苹果多酚添加量为0.5%时,复合膜液的DPPH自由基清除率、脂质氧化抑制率和OH自由基清除率分别为41.33%、56.32%、35.44%;当苹果多酚添加量增至1.5%时,DPPH自由基清除率、脂质氧化抑制率和OH自由基清除率增加至94.3%、95.9%、98.4%。与同等浓度的BHT(2,6-二叔丁基-4-甲基苯酚)相比,复合膜液具有更高的抗氧化活性(P<0.01)。此外,随着苹果多酚浓度的增加,复合膜液的总还原力也显著提高。流变学分析结果表明,复合膜液为非牛顿剪切变稀型,随剪切速率增加,复合膜液表观黏度逐渐降低,最终趋于平稳(5 Pa&s)。此外,随苹果多酚添加量增加,复合膜液的非牛顿假塑性流体特征逐渐明显。当苹果多酚添加量为1.5%时,复合膜液动态流变特性由黏性模量主导转变为弹性模量主导。红外光谱和X-RAD分析结果表明,苹果多酚中-OH和壳聚糖分子中的-OH以及-NH2形成明显的分子间弱作用力,使复合膜液在3 400 cm-1处的红外吸收峰出现红移,1 545 cm-1、1 245 cm-1处的红外吸收峰有轻微减弱,且这种分子间弱作用力降低了壳聚糖的结晶度。热分析结果表明,苹果多酚添加量增加显著提高了复合膜液的热稳定性。对照组的3个阶段质量损失温度为50.8℃、110.7℃、269.9℃,当添加量1.5%苹果多酚时,复合膜液的质量损失温度增至56.6℃、128.7℃、272.9℃。【结论】苹果多酚-壳聚糖复合膜液具有良好的抗氧化能力,且膜液的黏度和热稳定性也较好,可作为一种优良的可食性液体涂膜应用于食品保鲜方面。
作者相关文章
Abstract:【Objective】The composite membrane liquids based on chitosan (5%, w/v) and varying apple polyphenols concentrations were developed in this work, and the composite membrane liquids with different polyphenol concentrations were fully investigated including their antioxidant activity, rheological properties and thermal stability. This result could provide theoretical basis for food preservation. 【Method】 The composite membrane liquids were prepared by adding different amounts of apple polyphenols (0.5%, 1.0% and 1.5%, respectively). Besides, effects of the different addition amounts of apple polyphenols on the antioxidant activity of the composite membrane fluids were measured. A controlled-strain rheometer was used to investigate static rheological properties of the composite membrane liquids, including the relationships between G′ and G″. The potential interactions between chitosan and apple polyphenols and the crystal structure of the composite membrane were characterized by Fourier transform infrared spectrum (FTIR) and X-ray diffraction, respectively. In addition, thermogravimetric (TG) and derivative thermogravimetric (DTG) analyses were conducted by using a thermal analysis equipment to characterize the thermal stability of the lyophilized composite membrane samples.【Result】The addition of apple polyphenols could significantly improve the antioxidant activities of the chitosan membrane liquid (P<0.01). The increase of apple polyphenols concentrations could lead to the increased antioxidant ability of the composite membrane liquids. When the apple polyphenols addition was 0.5%, the DPPH scavenging rate, inhibition capacity of lipid oxidation and OH radical scavenging rate were determined to be 41.33%, 56.32%, 35.44%, respectively. As the addition amount of apple polyphenols was increased to 1.5%, the antioxidant ability of the composite membrane liquids increased to 94.3%, 95.9%,98.4%, respectively, significantly higher than that of 0.5% polyphenol-incorporated composite membrane liquid (P<0.01). Compared to the BHT (1.5%), antioxidation properties of the composite membrane liquids with 1.5% apple polyphenols were higher (P<0.01). Moreover, the rheological analyses suggested that the composite membrane liquid was non-Newton pseudoplastic liquid (n0.99). With the increase of shear rate, the viscosity of the composite membrane liquids displayed an initially decrease but then a relatively stable trend (approximately 5 Pa·s). Meanwhile, the incorporation of apple polyphenols enhanced the viscoelastic property of the composite membrane liquids. Dynamic rheology of the composite membrane liquid transformed from G′G″. The results of FTIR and X-ray showed that the intermolecular interactions of apple polyphenols (-OH) and chitosan (-OH, -NH2) were formed, resulting in the slight change of absorption peak of the composite membrane at 3 400 cm-1, 1 545 cm-1 and 1 245 cm-1 and resulting in the reduced crystallinity of chitosan. According to the result of thermal analysis, thermal stability of the composite membrane liquids increased, probably due to the hydrogen bonds formed via the linkages between apple polyphenols and chitosan.【Conclusion】The composite membrane liquids prepared by adding apple polyphenols into the chitosan had higher antioxidant capacity, viscosity and thermal stability, thus could be used as a potential edible coating material for food preservation.
Key words:
基金资助:农业部现代苹果产业技术体系建设专项(CARS-28)
郭玉蓉,E-mail:YRguo730@snnu.edu.cn&&&
作者简介: 梁迪,E-mail:
引用本文: &&
梁迪,杨曦,郭玉蓉. 不同浓度苹果多酚对壳聚糖复合膜液理化性质的影响[J]. 中国农业科学, ): .
LIANG Di, YANG Xi, GUO YuRong. Effects of Different Concentrations of Apple Polyphenols on the Physicochemical Properties of Chitosan Membrane Fluids. Scientia Agricultura Sinica, ): .
链接本文: &
&&&&&或 &&&&
[1]&&& CAMPOS C A, GERSCHENSON L N, FLORES S K. Development of edible films and coatings with antimicrobial activity. Food & Bioprocess Technology, ): 849-875.
[2]&&& PIEMONTE F G V. Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources Part A Recovery Utilization & Environmental Effects, ):.
[3]&&& RHIM J M, WELLER C L, HAM K S. Characteristics of chitosan films as affected by the type of solvent acid. Food Science & Biotechnology, ): 35-40.
[4]&&& JAYAKUMAR R, ENON D, MANZOOR K, NAIR S V, TAMURA H. Biomedical applications of chitin and chitosan based nanomaterials& A short review. Carbohydrate Polymers, ): 227-232.
[5]&&& SHOJI T, AKAZOME Y, KANDA T. The toxicology and safety of apple polyphenol extract. Food and Chemical Toxicology, ): 959-967.
[6]&&& EBERHARDT M V, LEE C Y, LIU R H. Antioxidant activity of fresh apples. Nature, ): 903-904.
[7]&&& 洪克前, 弓德强, 张鲁斌, 谷会, 王松标, 詹儒林. 壳聚糖涂膜对芒果采后品质及生理特性的影响. 中国农学通报, ): 182-187.
HONG K Q, GONG D Q, ZHANG L B, GU H, WANG S B, ZHAN R L. Effects of chitosan coating on the postharvest quality and physiology in mango fruit. Chinese Agricultural Science Bulletin, ): 182-187. (in Chinese)
[8]&&& 王香爱, 李俊燕. 壳聚糖季铵盐涂膜对芒果保鲜效果的研究. 贵州农业科学, ): 127-129.
WANG X A, LI J Y. Study on the effects of chitosan quaternary ammonium salt coating on mango storage. Guizhou Aagricultural Sciences, ): 127-129. (in Chinese)
[9]&&& GARZA T M Z , GARCIA S, NINO A K. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Science, ): .
[10]&& REN L, YAN X, ZHOU J, TONG J, SU X. Influence of chitosan concentration on mechanical and barrier properties of corn starch/ chitosan films. International Journal of Biological Macromolecules, ): .
[11]&& ROBLEDO N, VERA P, LOPZ L, YAZDANI P M, TAPIA C, ABUGOCH L. Thymol nanoemulsions incorporated in quinoa protein/c antifungal effect in cherry tomatoes. Food Chemistry, ): 211-219.
[12]&& ASHRFI A, JOKAR M, MOHAMMADI N A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. International Journal of Biological Macromolecules, ): 444-454.
[13]&& SUN L J, GUO Y R, FU C C, LI J J, ZHOU L. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chemistry, ): .
[14]&& SUN L J, SUN J J, NIU P F, YANG X, GUO Y R. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydrate Polymers, ): 81-91.
[15]&& 冉旭, 苟立, 孟宪伟, 王方瑚, 冉均国. 壳聚糖溶液的制备和壳聚糖降解性的研究. 食品科学, ): 18-21.
RAN X, GOU L, MENG X W, WANG F H, RAN J G. Study on the preparation of chitosan solution and the degradation of chitosan. Food Science, ): 18-21. (in Chinese)
[16]&& XIE M H, HU B, YAN Y H, ZHOU L, OU S Y, ZENG X X. Rheological properties of gallic acid-grafted-chitosans with different substitution degrees. Food Science and Technology, ): 472-479.
[17]&& 吴国杰, 姚汝华. 壳聚糖溶液流变学性质的研究. 华南理工大学学报(自然科学版), ): 62-66.
WU G J, YAO R H. Study on the rheological properties of chitosan solution. Journal of South China University of Technology (Natural Science), ): 62-66. (in Chinese)
[18]&& HUANG G Q, XIAO J X, WANG S Q, QIU H W. Rheological properties of O-carboxymethyl chitosan-gum Arabic coacervates as a function of coacervation pH. Food Hydrocolloids, ): 436-441.
[19]&& 李巨秀, 张小宁, 李伟伟. 不同品种石榴花青苷、总多酚含量及抗氧化活性比较研究. 食品科学, ): 143-146.
LI J X, ZHANG X N, LI W W. Comparative studies of total anthocyanins, total polyphenols and antioxidant activities of different pomegranate varieties. Food Science, ): 143-146. (in Chinese)
[20]&& KIM K W, THOMAS R L. Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, ): 308-313.
[21]&& XUE C, YU G, HIRATA T, TERAO J, LIN H. Anti-oxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine- liposomal suspension and organic solvents. Journal of the Agricultural Chemical Society of Japan, ): 206-209.
[22]&& 刘敏, 肖颖, 左爱仁, 谢燕飞, 余雄英. 槲皮素、根皮素、水飞蓟宾清除自由基和抑制脂质过氧化活性研究. 中成药, ): 735-756.
LIU M, XIAO Y, ZUO A R, XIE Y F, YU X Y. Study on the scavenging of free radicals and inhibition of lipid peroxidation by quercetin, caryotin and silybin. Chinese Traditional Patent Medicine, ): 735-756. (in Chinese)
[23]&& OYAIZU M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, ): 307-315.
[24]&& GRECO E, CERVELLATI R, LITTERRIO M L. Antioxidant capacity and total reducing power of balsamic and traditional balsamic vinegar from Modena and Reggio Emilia by conventional chemical assays. International Journal of Food Science & Technology, ): 114-120.
[25]&& SUN T, ZHOU D, XIE J, MAO F. Preparation of chitosan oligomers and their antioxidant activity. European Food Research & Technology,
(3/4): 451-456.
[26]&& HYUN J R, IN Y B, LEE S Y, YOO S H, CHANG P S, LEE H G. Enhancement of anti-radical activity of pectin from apple pomace by hydroxamation. Food Hydrocolloids, ): 545-548.
[27]&& 尹艳, 高文宏. 两种水溶性大豆多糖的X-射线衍射分析. 食品研究与开发, ): 1-2.
YIN Y, GAO W H. Study on analyzing X-ray diffraction patterns of two kinds of soluble soybean polysaccharides. Food Research and Development, ): 1-2. (in Chinese)
[28]&& YANG X, TANZEELA N, LIANG D, HOU Y J, SUN L J, GUO Y R. Low methoxyl pectin gelation under alkaline conditions and its rheological properties: using NaOH as a pH regulator. Food Hydrocolloids, 0-571.
[29]&& MOURYA V K, INAMDAR N N, CHOUDHARI Y M. Chitooligosaccharides: synthesis, characterization and applications. Polymer Science, ): 583-612.
[30]&& 古绍彬, 吴影, 董红敏, 郭金英, 李莉. 苹果多酚抗氧化作用及其清除自由基能力的研究. 中国粮油学报, ): 58-61.
GU S B, WU Y, DONG H M, GUO J Y, LI L. Study on the antioxidant and free radical scavenging ability of apple polyphenol. Journal of the Chinese Cereals and Oils Association, ): 58-61. (in Chinese)
[31]&& PENG Y, LI Y, XIANG K. Adding green tea polyphenols enhances antioxidant of chitosan film. Transactions of the Chinese Society of Agricultural Engineering, ): 269-276.
[32]&& COMBO A M, AGUEDO M, DANTHINE S, GOFFIN D. Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. International Journal of Biological Macromolecules, ): 148-156.
[33]&MANGIACAPRA P, GORRASI G, SORRENTINO A, VITTORIA V. Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydrate Polymers, ): 516-523.
[34]&& KAZUO A, TOMOHIRO O, SABURO M, YOSHIHARU O. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials, ): 33-49.
[35]&& LI W, JIANG X, XUE P, CHEN S. Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals. Science Bulletin, ): 887-889.
[36]&& VAYNDORF E M, LEE S S, LIU R H. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. Journal of Functional Foods, ): .
[37]&& WANG L, DONG Y, MEN H, TONG J, ZHOU J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, ): 35-41.
[38]&& PENG Y, WU Y, LI Y. Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, ): 282-289.
[39]&& BANERJEE T, MITRA S, SINGH A K, SHARMA R K. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. International Journal of Pharmaceutics, /2): 93-105.
[40]&& BOURTOOM T, CHINNAN M S. Preparation and properties of rice starch chitosan blend biodegradable film. Food Science & Technology, ): .
[41]&& LE B C, GUYOT S, RENARD C M. Non-covalent interaction between procyanidins and apple cell wall material Part I. Effect of some environmental parameters. Biochimica Et Biophysica Acta General Subjects, (1): 10-18.
[42]&& MORRIS E R. Shear-thinning of &random coil& polysaccharides: characterization by two parameters from a simple linear plot. Carbohydrate Polymers, ): 85-96.
[43]&& LI L, LIAO B Y, THAKUR K, ZHANG J G, WEI Z J. The rheological behavior of polysaccharides sequential extracted from Polygonatum cyrtonema Hua. International Journal of Biological Macromolecules, : 761-771.
[44]&& MURPHY S B. Structure-property relationships in food biopolymer gels and solutions. Journal of Rheology, 51-1463.
[45]&& MATHEW S, BRAHMAKUMAR M, ABRAHAM T E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch&chitosan blend films. Biopolymers, ): 176-187.
[46]&& WANG W, MA X, JIANG P, HU L, ZHI Z. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, ): 730-739.
[47]&& DEMIR Y K, SOLMAZ M E, KAYSER V. Poly (methyl vinyl ether-co-maleic acid) & pectin based hydrogel-forming systems: gel, film, and microneedles. European Journal of Pharmaceutics & Biopharmaceutics, : 182-194.
[48]&& EINHORNSTOLL U, KUNZEK H, DONGOWSKI G. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocolloids, ): .
[49]&& COVAS C P, MONA W A, ROMAN J S. A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation & Stability, ): 21-28.
胡礼,王金枝,张春晖,唐春红,杜桂红,李侠,李春红. [J]. 中国农业科学, ): .
杨玲,张彩霞,康国栋,田义,丛佩华. [J]. 中国农业科学, ): .
汤晓智, 扈战强, 周剑敏, 方勇, 沈新春, 胡秋辉. [J]. 中国农业科学, ): .
邝敏杰,齐敏玉,何静仁,李书艺,刘刚,祝振洲,蔡红燕,冯军. [J]. 中国农业科学, ): .
刘琴, 张薇娜, 朱媛媛, 胡秋辉. [J]. 中国农业科学, ): .
王宝刚, 侯玉茹, 李文生, 杨军军, 石磊, 杨媛, 冯晓元. [J]. 中国农业科学, ): .
刘文彬, 马秋刚, 邓程君, 魏秀莲, 张建云, 计成. [J]. 中国农业科学, ): .
冯倩倩, 杨维仁, 胥保华, 李成成. [J]. 中国农业科学, ): .
马彦霞, 郁继华, 张国斌, 曹刚. [J]. 中国农业科学, ): .
胡博然, 闻雯, 阴淑贞, 朱勇, 张奉民. [J]. 中国农业科学, ): 135-141.
张有林,张润光,钟玉. [J]. 中国农业科学, ): .
. [J]. 中国农业科学, ):
朱叶萌,谢正军,李云涛,韩新燕 . [J]. 中国农业科学, ): 387-394
沈福晓, 蒋金凤, 程安春, 汪铭书, 路立婷, 贾仁勇, 朱德康, 陈孝跃, 孙涛. [J]. 中国农业科学, ): .
蒋金凤, 程安春, 汪铭书, 路立婷, 朱德康, 贾仁勇, 陈孝跃. [J]. 中国农业科学, ): .
版权所有 & 2014 《中国农业科学》 编辑部
地址: 北京市中关村南大街12号 邮政编码:100081 &&电话:86-010- E-mail:
本系统由设计开发

我要回帖

更多关于 理化性能测试 的文章

 

随机推荐