量子世界和相对论量子力学,是矛盾的吗?

超长文!你很可能不够了解的相对论与量子力学(10——11) | 死理性派小组 | 果壳网 科技有意思
866449人加入此小组
标题略嘲讽。吸引人来看。不好意思了。本文为转帖。先来一段预览。然后再来正题。不要当成是糊弄幼儿园孩子的水平。——————————十一、两个决定性实验在谈到前一个实验之前,我们必须先介绍一个被称之为“科学中最深刻的发现”的贝尔不等式,这个不等式的形式是:|Pxz-Pzy|≤1+Pxy。我们可以不用理会这个不等式的具体含义,也不用管贝尔是怎么推导出来的,我们只要知道,贝尔为我们提供了一种可能,即直接用实验数据验证量子理论。贝尔不等式用数学语言告诉我们,如果我们的世界是经典实在的,那么不等式成立,反之,则不成立。 贝尔不等式使物理学家们用具体实验来验证ERP佯谬成为可能。 ERP佯谬是爱因斯坦和波多尔斯基以及罗森联合提出的一个思想实验。………………为了反驳量子理论,爱因斯坦提出了他的诘难:想象一个大粒子衰变成两个小粒子反向飞开。如果粒子A自旋为“左”,粒子B便一定是“右”,以保持总体守恒。…………… 1982年,法国奥赛理论与应用光学研究所的阿斯派克特小组第一次在精确意义上对EPR作出检验,这个实验被命名为阿斯派克特实验,实验结果毫无悬念的证明了量子理论的胜利,贝尔不等式不成立!之后若干物理学家多次重复检验,结果一致。阿斯派克特系列实验是20世纪物理史上影响最为深远的实验之一,甚至可以和1886年迈克尔逊—莫雷实验相提并论。面对实验结果,人们面临选择,要么保留实在性,要么保留定域性。二者至少必须放弃一样。……………如果说阿斯派克特实验让人们还保留一些经典世界定域性的希望,那么下一个实验——延迟选择实验将彻底摧毁人们的这最后一点希望。————————————————————————因为避免开篇有人就先入为主的抱着强烈排斥的态度。我改动了标题。原标题,原文,在下面。太长,我提取了标题作为目录。原文太长。只能分为多段发了。本来以为,回复也可以1万字。结果是3千字。只能发多个帖子了。希望不会被删除。——————————一、 本质问题的疑问二、历史的足迹三、东西方人思维方式的差异四、体会佛学的空五、科学发展的历程六、相对论的两个原理七、相对论与佛学的融通八、对相对论效应的重新解读九、道家的世界生成观十、粒子还是波?十一、两个决定性实验十二、佛学破解量子迷雾十三、新的视角看世界十四、信息的本质与熵增原理十五、全息的世界十六、关于宇宙波函数的大疑问十七、神奇的分形十八、感觉与感应十九、错觉的原理二十、为道与为学二十一、无中生有,真空不空二十二、协同进化二十三、逻辑世界与人工生命二十四、两个世界的区别二十五、意识界的互联互通二十六、潜意识的力量二十七、境随心转二十八、博弈之道二十九、囚徒困境三十、一报还一报三十一、最优的策略三十二、华丽的转身 ————————————转载:从相对论与量子力学,体会佛学 十、粒子还是波?从东方智慧思想的角度来看相对论,还仅仅是一个开始,我们将沿着这个方向继续向量子理论出发。为了说明我们并不是牵强附会,有必要先引出以下三段量子物理学家的话:J.R.奥本海默:在原子物理学的发现中所表现出来的……关于人类认识的一般概念,……就其本质而言并非我们根本不熟悉、前所未闻或者完全是新的。即使在我们自己的文化中它们也有一定的历史,而在佛教和印度教的思想中更居有中心的地位。我们所要作的发现只是古代智慧的一个例证、一种促进和精细化。N.玻尔:为了与原子理论的教程作一类比……(我必须转向)这样一些方法论的问题,如来佛与老子这样一些思想家早就遇到了这类问题,就是在存在这幕壮观的戏剧中,如何使我们既是观众又是演员的身分能够协调起来。W.海森堡:自从第一次世界大战以来,日本科学研究对于理论物理的巨大贡献可能是一种迹象,它表明在东方传统中的哲学思想与量子力学的哲学本质之间有着某种确定的联系。以上三位都是量子科学领域无可争议的顶尖人物,他们不约而同的提到东方哲学思想,应该不仅仅是偶然的原因。因此,我们有必要仔细考察量子理论与东方哲学思想的关联性,看看能否给我们带来新的启发。量子理论与相对论一样,都是科学发展以来最为成功的理论之一,基于量子理论的预言在极高的精度上与实验相符。量子理论给我们提供了新的关于自然界的表述方法和思考方法,揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。现代的许多科技成果都带着量子理论的烙印。没有量子理论,我们的科技可能还只停留在20世纪初的水平上。但是,这样一个成功的理论,却是目前物理学家们最感困惑的一个理论。最主要的困惑在于,一些基本的实验现象不能得到合理的解释,另外,海森堡不确定性原理的机制是什么,也不能得到有说服力的解释。不确定性原理是说:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差的乘积必然大于一个常数。这个规律是海森堡在1927年通过数学手段推出来的,之后被许多实验确认,是微观粒子运动的基本规律。我们可以用一个通俗的比喻来理解不确定性原理:在一个密闭而漆黑的房间里,我们被告知,有一只苍蝇在房间里漫无目的的飞翔,但由于一片漆黑,我们无法确实认定这一点。现在我们手头有两个道具,一个是带闪光的照相机,一个是具有红外功能的摄影机。我们一次只能选择一个道具,当我们选择照相机时,我们可以拍下苍蝇的照片,这样,苍蝇的模样等细节信息就一清二楚,但同时关于苍蝇运动方面的信息却完全失去了,我们得到的只是一幅静止的图片。当我们选择红外摄影机时,苍蝇的运动轨迹被我们记录了下来,但同时苍蝇具体的模样等细节信息我们却一无所知,因为红外摄影机里记录的只是一个不断移动的光点。总之,我们不可能同时即把苍蝇的样子看得清清楚楚,又把苍蝇的运动记录完整,这是一对共轭的矛盾。在微观的量子世界,科学必须要面对这样的矛盾,而在宏观领域,则没有这样的限制。在宏观领域,就象在房间里装上了电灯,苍蝇的样貌和运动轨迹都可以被摄影机同时记录下来,这并不是矛盾的。不确定性原理诞生80多年来,物理学家们一直不知道这个原理背后的原因。也有一些解释,如霍金就认为,测不准的原因是当人去观察粒子时,光子对粒子造成了扰动,所以测不准。这个解释虽然很形象,但并不能使人信服,因为测不准原理并不是实验室中的发现,而是首先通过数学公式推导得出的,这就说明,只要量子理论的公设没有问题,那么从理论上说,粒子的位置和动量就是没办法同时精确测量,而这并不是测量手段的问题。况且,有些亚原子粒子的质量可以非常大,光子的扰动可以忽略不计,因此说测不准的原因是光子扰动的说法是说不过去的。我们再来看电子的双缝实验。如果我们把一束电子直接打在屏幕上,屏幕会显示一个亮点,表明电子是粒子性的。我们再让一束电子通过两段平行的狭缝,在屏幕上则会显示出明暗相间的干涉图案,表现出波动性。如果将双缝之一关闭,则屏幕会立即出现衍射图案,但干涉图案与衍射图案并不相同,双缝干涉图案并不是单缝衍射图案的叠加。最奇怪的是,在上述实验中,让电子一粒一粒的发射,实验结果还是一样的。那么电子到底是粒子还是波呢?如果说电子是粒子,通过单缝时,为什么会出现衍射图案?而且如果是粒子的话,必定不可分割,也无法解释一粒一粒发射的电子通过双缝后怎么会形成干涉图案——前一粒不可能与后一粒发生干涉,单个粒子也不可能同时穿过两条狭缝自己与自己发生干涉。在双缝实验中,我们快速遮去其中一个缝,单个的电子又是如何感知我们的这一行为并立即表现出完全不同的运动轨迹,本来应该落在干涉图案中的亮点变成了落在衍射图案中的亮点?要知道,双缝之间的距离相对于电子的运动尺度来说,至少是十万倍的差距,如果电子是粒子的话,电子要如何瞬间感知到十万倍距离外的缝的状态?如果说电子是波,可以解释电子同时通过两条狭缝后发生干涉,但通过狭缝后打在屏幕上的为什么仍然是一个小亮点,而不是较暗的干涉图案?如果我们想要一探究竟,在双缝旁边安装一个粒子监视器,此时我们会看到一个个的粒子,但是干涉图案也随之消失。电子好像知道人们的心思,我们想要偷看它的秘密,它立即会掩饰得很好,一点破绽也没有。粒子和波这两种最不可能合一的状态,在亚原子世界竟然是融合在一起的,这是量子科学中最难以理解的谜团。目前主流的看法是,电子(其他亚原子粒子也一样)是处在一种所有可能状态的迭加态中,我们无法推测电子在某一时刻的具体位置(除非进行观测),但我们可以知道电子出现在某一位置的几率是多少,这个几率可通过薛定谔波函数计算得出。那么,粒子在通过狭缝前到底是一种什么状态呢?是粒子还是波?还是一种被几率波函数约束的量子迭加态?如果是后者,我们又要如何来理解呢?显然,微观亚原子粒子的行为不能用我们经典的理论来解释。我们只能笼统的说,粒子具有波粒二象性。如果我们只满足于对现象的了解,这个认知就足够了,教科书这么写,我们也就这么看。就像世界上几乎所有的应用物理学家都认为的那样,知不知道粒子的秘密和能不能运用量子理论是两回事。现在量子计算机的研究正如火如荼的开展,应用物理学家们不会干等着理论物理学家的解释再干活的。况且,粒子世界怎么回事,跟我们的生活关系好像不大。粒子再怎么奇怪,太阳还是有规律的东升西落,我们还是要有规律的上学上班,微观粒子世界和宏观世界是不相干的。但是,真的不相干吗?薛定谔的那只可怜的猫打碎了我们希望窝在有规律的宏观世界的美梦,把微观世界和宏观世界生生的扯到了一起。埃尔温·薛定谔是量子力学的奠基人之一,在1935年就已经觉察到量子迭加的哲学问题怎样可以在宏观级上出现。他设计了这样一个思想实验:“一只猫关在一钢盒内,盒中有一种残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计数器中有一小块辐射物质,它非常小,或许在1小时内只有一个原子衰变。在相同的几率下或许没有一个原子衰变。如果发生衰变,计数管便放电并通过继电器释放一锤,击碎一个小的氢氰酸瓶。于是猫被毒死”。我们运用自己的逻辑推测,那只猫是非死即活的,两者必居其一。可是,按照量子力学规则,盒内整个系统处于两种态的迭加之中,一态中有活猫,另一态中有死猫。但是,一只又活又死的猫,是什么意思呢?猫的死活被摆在了台面上,我们不能再奉行鸵鸟政策了!对于量子领域的这种奇怪特性,量子理论的奠基人之一的玻尔给出了自己的理解。他的解释也被认为是量子理论的传统观点,被称为哥本哈根解释。玻尔认为:在对某个量子物体实行一次测量之前,就把一组完全的属性委归于它,那是没有意义的。也就是说,询问一个电子“实际”是什么的问题,是没有意义的。或者至少,当您提这个问题时,物理学家不可能给予回答。他宣称:物理学不告诉我们世界是什么,我们只能说观察到的世界是什么。对于薛定谔的那只被量子论决定生死的猫,玻尔的观点是,物理学不能告诉我们猫是生还是死(当然我们的逻辑可以判断),只有在我们观察后,波函数发生“塌缩”,我们才能知道确定的结果。玻尔的结论是惊世骇俗的,因为本来是客观的物理实验,结果却要由主观的意识来决定,这是大多数人所不愿接受的。我们一般会毫不犹豫的认为这个世界是实实在在存在着的,眼前的电脑、屋外的果树、鲜花,一切的一切,都是实实在在的呆在那儿,这一切,并不会因为我们没有注意到就不存在。换句话说,就算我们魂归西天,这个地球还是一样的转。是的,我们坚定的这样认为。不仅我们,大多数物理学家都是同样的看法,认为我们这个世界具有两种特性:实在性和定域性。其中定域性是指,一个物体或人,比如张三,要么在家里,要么在办公室,或者在其他某个地方从事秘密活动。我们可以确定,在某个具体的时间,张三只可能出现在一个地方,他不可能同时在家又在办公室(当然除了他是SOHO的在家办公一族)。也就是说,没有一种东西可以超过光的速度。然而玻尔告诉我们,在粒子世界,所谓的定域性是不存在的,而实在性,从物理学角度也是无法确定的。出于保卫经典世界的定域性和实在性角度出发,一些物理学家发展出了关于量子特性的多种解释。一种隐变量理论认为,我们不清楚粒子的行为是因为某种暂时还没有被我们发现的因素导致的,粒子其实和乒乓球一样是经典实在的。另一种多宇宙论则认为,我们每次观测,宇宙就发生一次分裂。比如我们看到粒子从左缝穿过,与此同时,另一个平行的宇宙被分裂出去,在那个宇宙,粒子其实是从右缝穿过的。这样,与我们平行的宇宙就有天文数字般那么多。我们不禁感叹,为了保卫实在世界的代价未免也太大了!况且这也不符合奥卡姆剃刀的经济性原则,奥卡姆剃刀原则告诉我们:不要把简单的事情复杂化。如果仅是理论的不完善,我们还可以勉强接受,然而以下将要谈到的两个已被证实的实验,将彻底粉碎任何保卫实在性和定域性的企图。 图一杨氏双缝干涉 图二双缝干涉示意图 图三电子一粒粒的发射,最终还是会形成干涉图案 图四薛定谔猫 十一、两个决定性实验在谈到前一个实验之前,我们必须先介绍一个被称之为“科学中最深刻的发现”的贝尔不等式,这个不等式的形式是:|Pxz-Pzy|≤1+Pxy。我们可以不用理会这个不等式的具体含义,也不用管贝尔是怎么推导出来的,我们只要知道,贝尔为我们提供了一种可能,即直接用实验数据验证量子理论。贝尔不等式用数学语言告诉我们,如果我们的世界是经典实在的,那么不等式成立,反之,则不成立。贝尔不等式使物理学家们用具体实验来验证ERP佯谬成为可能。 ERP佯谬是爱因斯坦和波多尔斯基以及罗森联合提出的一个思想实验。天才的爱因斯坦建立了相对论,可是在他内心深处仍然渴望经典实在的世界,这方面他是保守的。为了反驳量子理论,爱因斯坦提出了他的诘难:想象一个大粒子衰变成两个小粒子反向飞开。如果粒子A自旋为“左”,粒子B便一定是“右”,以保持总体守恒。按照量子理论,在观测之前,它们的状态是不确定的,只有一个波函数可以描绘它们。当彼此飞离数光年后,我们开始观测粒子A,它的波函数坍缩了,瞬间随机选择了比如说“左”旋。此时粒子B也必须瞬间成为“右”旋了。那么B是如何得知A的状态呢?难道有超光速信号来回于它们之间?这显然违背了相对论。 1982年,法国奥赛理论与应用光学研究所的阿斯派克特小组第一次在精确意义上对EPR作出检验,这个实验被命名为阿斯派克特实验,实验结果毫无悬念的证明了量子理论的胜利,贝尔不等式不成立!之后若干物理学家多次重复检验,结果一致。阿斯派克特系列实验是20世纪物理史上影响最为深远的实验之一,甚至可以和1886年迈克尔逊—莫雷实验相提并论。面对实验结果,人们面临选择,要么保留实在性,要么保留定域性。二者至少必须放弃一样。如果保留实在性,定域性就必须放弃,这就意味着存在一种物理信号可以超光速传播。而这与众多实验事实验证过的相对论相矛盾,显然不可取。那么保留定域性,放弃实在性呢?这种选择是痛苦的,大多数人并不表态,也许是默认?因为这似乎是唯一的选择。的确,这就是目前对量子状态的一种主流看法,量子处在多种可能性的迭加态。当我们进行观测行为的时候,几率波函数塌缩,一种状态被决定下来。至于这究竟是怎么发生的,没有太多人去探究。这个领域像个黑洞,我们只能猜测,真相是什么,谁也说不清。如果说阿斯派克特实验让人们还保留一些经典世界定域性的希望,那么下一个实验——延迟选择实验将彻底摧毁人们的这最后一点希望。延迟选择实验是美国理论物理学家惠勒在1979年提出的一个思想实验,这个实验的基本思路是,用涂着半镀银的反射镜来代替双缝。一个光子(电子也是一样)有一半可能通过反射镜,一半可能被反射,这是一个量子随机过程。把反射镜和光子入射途径摆成45度角(如下图所示),那么它一半可能直飞,另一半可能被反射成90度角。但是,我们可以通过另外的全反射镜,把这两条分开的岔路再交汇到一起。在终点观察光子飞来的方向,我们可以确定它究竟是沿着哪一条道路飞来的,如果检测器1在响,说明光子经由直飞的ADB线路传播过来,如果检测器2在响,说明光子经由反射的ACB线路传播过来。但是,我们也可以在终点B处再插入一块呈45度角的半镀银反射镜,这样,两束光线将重新组合,这会引起波的干涉效应,于是,进入1和2的光束强度分别与两束光在组合点处的相对位相有关。这些位相能通过调整光程长度而改变。特别地,可能这样安排位相,使得互相干涉导致进入1的光强为零,100%的光进入2。按照保留定域性的量子理论观点,如果不插入第二块半镀银镜B,那么光子经由确定的线路ACB或者线路ADB传播,最终在检测器1或检测器2处得到光子的信号。如果插入第二块半镀银镜B,我们观测手段发生改变,光子立即以量子迭加态同时经两条线路穿过B并发生干涉。总之,如果我们不在终点处插入半反射镜,光子就沿着某一条道路而来,反之它就同时经过两条道路。现在,关键点是第二块半镀银镜B插入还是不插入,这个决定可以延迟作出,直到一个确定的光子已经快要到达终点时才决定。这样,我们可以在事情发生后再来决定它应该怎样发生!这是与定域性直接相违背的。在提出这个设想5年后,马里兰大学的卡洛尔.阿雷(Carroll Alley)和其同事做了延迟实验,验证了惠勒的这一设想。与此同时慕尼黑大学也作出了类似结果。延迟选择实验甚至在宇宙尺度上也具有可操作性。1979年月29日,瓦尔希(Walsh)等人用2.1米光学望远镜发现了一对相距5.7角秒的类星体A,B。它们的亮度差不多。等级均为17等,光谱中有相同的发射谱系,谱线的宽度和强度相同。它们曾被认为是两个不同的类星体。二者分开的视角是6弧秒。现已证明:二者实际上是一个类星体由于引力透镜原理所成的两个像。而这个双像成为在地球上进行宇宙尺度的延迟选择实验的天然光源。惠勒提出了一个实验装置,将望远镜分别对准两个类星体像,利用光导纤维调整光程差,并将光子引入实验装置,就可以完成星际规模的延迟选择实验。也就是说,我们是否插入第二块半镀银镜B,将决定上亿光年前就已发出的光的路线,物理世界的定域性在此被推翻。有意思的是,引力透镜现象是爱因斯坦广义相对论所预言的一种现象,引力透镜现象的存在是广义相对论的一个直接验证,而基于引力透镜的延迟选择实验却直接否定了相对论的基础,即光速为物理世界的最大速度。量子理论和相对论的矛盾在这一个实验中被彻底揭露。二者都是被无数实验现象证实的理论,我们无法放弃任何一个理论。两个自成体系的逻辑公设系统,在描述同一个世界的时候产生了一个悖论:引力透镜现象证明了相对论的正确,而基于引力透镜的延迟选择实验,却推翻了相对论的定域性基础。我们的世界到底是怎么一回事?是世界欺骗了我们还是我们被自己欺骗?延迟选择实验和阿斯派克特实验是任何试图解释量子世界奇异特性理论的试金石,那些试图保有经典世界实在性和定域性的企图在这两个实验面前都将无法自圆其说。我们无须再做无谓的尝试,相对论与量子论的矛盾实际上已经明确的告诉了我们,并不是理论有问题,而是理论的公设有问题。当爱因斯坦在与玻尔争执的时候,哥德尔可能在心里说:看吧,我早就说过任何具有公设的系统都是不完备的。所以你们的争执也是迟早的事!的确,用相对论无法解释量子的古怪行为,而量子论自己都无法解释量子的行为,更不要说去解释相对论了。现代科学面临着一种尴尬的境地,如果不从根本上进行反思,这种悖论恐怕无法化解。我们不妨回味一下玻尔的观点:“物理学不告诉我们世界是什么,我们只能说观察到的世界是什么。”大家是否注意到,玻尔的观点与佛家的理论不谋而合!前面我们说过,佛家的观点认为,没有一个独立于观察者之外的世界,每个人所感知到的世界,只不过是自己无明分别念所产生的幻象。既然如此,我们能否从佛学的角度来解释粒子的古怪行为,并最终化解相对论与量子论的矛盾呢?我们拭目以待。 延迟选择实验
+ 加入我的果篮
(C)2016果壳网&&&&京ICP证100430号&&&&京网文[-239号&&&&新出发京零字东150005号- 或用以下帐号直接登录 -
爱因斯坦的终极梦想:广义相对论与量子世界联姻
来源:新浪科技作者:彬彬
爱因斯坦余生花费了大量心血,企图找到方法可以将广义相对论与量子力学统一起来,可最终还是失败了。弦理论的合理性在于,它描述一次振动就是一个引力子,尽管它从未被科学家发现,但仍被认为是产生引力的粒子。
原标题: 爱因斯坦的终极梦想:广义相对论与量子世界联姻
  爱因斯坦余生花费了大量心血,企图找到方法可以将广义相对论与量子力学统一起来,可最终还是失败了。
  这幅艺术概念图描绘了时空泡沫结构可能出现的样子,这些比原子核还小万亿倍的极微型泡泡永久性处于漂浮状态却又转瞬即逝。
  新浪科技讯
北京时间11月23日消息,据国外媒体报道,今年11月份是阿尔伯特-爱因斯坦著名的“广义相对论”诞生一百周年。广义相对论是一项辉煌璀灿的科学成就,是描述引力最简洁的科学理论。然而,这一理论与量子力学存在矛盾,一百年来始终无法用某个理论统一解释。目前,许多科学家都致力于这一领域的研究,其中最为人所熟知的是弦理论和环形量子引力说,然而,二者目前均无法进行科学试验以检验对错。
  美国能源部费米实验室是美国最大的大型强子对撞机研究机构,能将质子加速到接近光速,帮助科学家探索物质、空间和时间的奥秘。唐-林肯是费米实验室的一位资深科学家,常常向公众普及众多科学知识,其中包括近期出版的《大型强子碰撞机:希格斯玻色子和其它让你脑洞大开的粒子的传奇故事》(约翰-霍普金斯大学出版社,2014版)。
  今年11月份是阿尔伯特-爱因斯坦著名的“广义相对论”诞生一百周年。广义相对论是爱因斯坦非凡的科学生涯中最璀灿的一项成就,它告诉我们空间本身具备延展性,在物质与能量的影响下会发生弯曲和伸展。这一理论颠覆了人类关于宇宙的传统认识,用黑洞和虫洞等概念丰富了人类的想像空间。爱因斯坦的广义相对论预言至今为止已经通过了所有观测和实验的验证,解释了众多科学现象,尤其是有关时间流逝、空间几何、自由落体运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应等。
  深入了解量子世界
  爱因斯坦的广义相对论在宏观尺度上令人信服,它完美地解释了脉冲双星之间的相互绕行以及水星的近日点进动。广义相对论还是GPS系统的关键指导理论,如今人们每天都在用到GPS导航。然而,宇宙的开端与黑洞中心附近的地带实在是截然不同的两个世界——量子世界。在量子世界里,亚原子尺度的粒子是主角。
  那么问题来了。在爱因斯坦的科学成就进入全盛时期时,量子力学刚刚诞生,因此他与物理学家尼尔斯-玻尔就广义相对论是否有悖常理且具概率性的激辩故事就成为科学界的一大传奇。爱因斯坦有句名言:“上帝是不会掷骰子的。”然而,不管多么蔑视量子力学理论,爱因斯坦还是非常清楚地知道他需要了解量子领域。随着不断探索理解和解释广义相对论,爱因斯坦试图了解当广义相对论被应用到微观世界时,引力是如何发生作用的。然而,结果只能用三个字来概括:很失败。
  搭桥量子世界与相对论
  爱因斯坦余生花费了大量心血,企图找到方法可以将广义相对论与量子力学统一起来,可最终还是失败了。不但他失败了,之后数十年所有前赴后继的科学家都未能成功。广义相对论与量子力学都是20世纪初的两大重要物理学理论,有关如何统一这两大理论的基本问题一直是科学界感兴趣的一个话题。科学家首先面临的是一个系统性问题:广义相对论运用的是一套微分方程,它们描述的是数学家所称的平滑可微分的空间。用外行的话来说就是,这意味着广义相对论的数学是平滑的,没有任何尖锐的边角。相反,量子力学描述的是一个量化的世界,例如在这个世界中,物质是以离散块状出现的,这意味着这儿有一个物体,但那儿没有,到处都是尖锐的边角。
  液态水的模拟解释
  为了阐明这些不同的数学公式,人们需要用不同寻常的思维深入思考一下日常熟悉的一种物质:液态水。即使不了解它,人们也已经对水持有两种不同的观点,可以解释微分方程与离散数学之间的矛盾。打个比方,回想一下用手在水里划过时的感受,那时候你觉得水是一种连续的物质,你手边的水与周围的水没什么两样。有可能存在的区别是水温的高低,或者水流的速度,但是水的本质是一样的。即使水流不断涌到你手边,感觉也几乎一样,两波间隔一毫米或者半毫米的水流之间,除了水还是水。事实上,在水流流动与动荡的数学中,假定的情况是水流中没有更微小不可分的水。这种数学描述的情况就是微分方程,也就是说假定物质之间不存在最小距离。
  然而,人们都知道事实并非如此,水是由水分子组成。一旦聚焦到小于三埃的距离时,一切都变了。因此,一旦你深入探测更微小的距离时,水就不再是一个可感知的概念。在这个节点上,你开始探测原子中的真空区,在这个真空区中电子会绕着微小而密集的核子旋转。事实上,量子力学就是建立在这样一个理念上,即存在最小的物体以及离散的距离和能量。这也是受热气体会发出某种特定波长光的原理:电子在特定能量下做绕行轨道运动,没有哪个轨道在规定数之间。一个正确的水的量子理论必须考虑这样一个事实:水中存在单个分子,“水”概念中存在最小距离的确有其特定意义。因此,从核心上来说,广义相对论的微分方程与量子力学的离散数学这两种理论的数学从根本上来说就存在矛盾。
  二者能否融合?
  二者本身也不是无法逾越的,毕竟量子力学部分可以通过微分方程来描述。不过,相关的问题是,一旦有人尝试将两个理论统一融合,就会出现无穷大,而当计算中出现无穷大时,就意味着可能计算出错。举个例子,假设电子是一种没有大小的典型物体,然后计算将两个电子绑到一起需要多少能量。如果这样计算,就会发现所需能量是无穷大,而无穷大对数学家来说是个无解的难题。可见宇宙中所有恒星发射的能量再大得惊人,其结果也不会是无穷大。因此,在现实计算中无穷大是一个很明显的标志,意指数学模型已经超出应用范围,需要重新审视以寻找可能在简单模型中忽视的新的物理定律。
  在现代科学中,科学家也在不断尝试解决爱因斯坦曾陷入的同样困境。理由很简单:科学的目标是解释所有的物理现实,从可能的最小物体到宇宙大远景。科学家希望告诉人们,所有的物质都来源于一些积木(或许只是一块积木),以及它们之间潜存的作用力。在四个已知的自然基本力中,科学家已经研究出三个量子理论,引力的量子理论始终令人迷惑不解。广义相对论毫无疑问是一个重大进步,但是,人们只有研究弄懂引力的量子理论,才能将所有理论整合统一。由于科学界目前还未有达成一致的科研方向,有些科学理念还是取得了一定的进展。
  弦理论的兴起
  在这些理念中,最有名的就是描述微观世界引力的弦理论。弦理论的一个基本观点是,自然界的基本单元不是电子、光子、中微子和夸克之类的点状粒子,而是很小很小的线状的“弦”(包括像意大利面状有端点的“开弦”和像呼啦圈状的“闭弦”)。弦理论中的弦尺度非常小,弦的不同振动和运动就产生出各种不同的基本粒子。打个音乐的比方,电子就像A调升半音,而质子就像D调降半音。同样,一根小提琴弦会有许多陪音,单根弦的振动就会产生不同粒子。弦理论的合理性在于,它描述一次振动就是一个引力子,尽管它从未被科学家发现,但仍被认为是产生引力的粒子。
  事实上,弦理论并不为广大科学界所接受,有的圈子甚至压根不承认它是一个科学理论。其原因在于,任何理论之所以被称为科学理论,就必须通过实验来检验其对错。然而,弦理论涉及的尺度之小令其无法获得实验证明。不过,一旦未来科学设备,如新一代的高速粒子加速器得以研发,或许能对弦理论进行试验并验证对错。另一种解释量子引力的理念被称为“环形量子引力”,该理论能将时空本身进行量子化,换句话说,这个模型认为存在最小空间以及最短时间。这一前卫理论认为,光速可能在不同波长上拥有不同数值。要证实这一理论,就需要光穿行漫长距离以便观测。为了实现这个目标,科学家计划利用可在穿过数十亿光年后仍能被观测到的伽玛射线爆进行研究。
  目前的情况看起来简单,即科学家关于量子引力还未形成一个可靠可信的理论,解决过程却非常艰难。量子的微观世界与引力的宏观世界还是相互矛盾,无法用某个理论来统一解释。不过,现代科学家都在致力解决这个迄今为止最为困难的问题,或许有一天爱因斯坦未完成的梦想会被实现。(彬彬)
欢迎关注“南方新闻网”公众号(微信上长按二维码识别 )
请文明发言,还可以输入140字
您的评论已经发表成功,请等候审核
小提示:您要为您发表的言论后果负责,请各位遵守法纪注意语言文明
新闻关键词
为进一步推动广东省大学生深入学习《习近平总书记系列重要讲话读本》(2016年版),增强中国特色社会主义的道路自信、理论自信、制度自信,为实现中华民族伟大复兴的"中国梦"贡献智慧和力量,广东省委宣传部、南方网决定在全省普通高等学校大学生中开展"党中央治国理政新理念新思想新战略知识竞赛"活动。

我要回帖

更多关于 量子力学和广义相对论 的文章

 

随机推荐