已知抛物线两点式上含有A,B两点,坐标分别为(10,2)(0,-3),有一条直线y=-x/2+8穿过这个抛物线两点式的焦点,

(;贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示. (1)顶点P的坐标是 ;(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.
落落为君6568
(1)∵y=-x2-2x+3=-(x 2+2x)+3=-(x+1) 2+4,∴P点坐标为:(-1,4);故答案为:(-1,4);(2)将点P(-1,4),A(0,11)代入y=ax+b得:4=−a+b 11=b ,解得:a=7 b=11 ,∴该直线的表达式为:y=7x+11;(3)∵直线y=mx+n与直线y=7x+11关于x轴成轴对称,∴y=mx+n过点P′(-1,-4),A′(0,-11),∴−4=−m+n −11=n ,解得:m=−7 n=−11 ,∴y=-7x-11,∴-7x-11=-x 2-2x+3,解得:x1=7,x2=-2,此时y1=-60,y2=3,∴直线y=mx+n与抛物线y=-x2-2x+3的交点坐标为:(7,-60),(-2,3).
为您推荐:
其他类似问题
扫描下载二维码如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛
练习题及答案
如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
题型:解答题难度:偏难来源:宁夏自治区竞赛题
所属题型:解答题
试题难度系数:偏难
答案(找答案上)
解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0),将C点的横坐标x=2,代入y=x2﹣2x﹣3,得:y=﹣3,∴C(2,﹣3);∴直线AC的函数解析式是:y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣)2+,∴当时,PE的最大值=;(3)存在4个这样的点F,分别是:F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图1,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图2,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图3,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中,即可得出G点的坐标为(1±,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为:y=﹣x+h,将G点代入后,可得出直线的解析式为:y=﹣x+7.因此直线GF与x轴的交点F的坐标为:(4+,0);④如图4,同③可求出F的坐标为:(4﹣,0);综合四种情况可得出,存在4个符合条件的F点.
马上分享给同学
初中三年级数学试题“如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛”旨在考查同学们对
求二次函数的解析式及二次函数的应用、
一次函数的图像、
求一次函数的解析式及一次函数的应用、
二次函数的图像、
平行四边形的性质、
……等知识点的掌握情况,关于数学的核心考点解析如下:
此练习题为精华试题,现在没时间做?,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问。
考点名称:
二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a&0);
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a&0)
(3)交点式:y=a(x-x1)(x-x2)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
求二次函数解析式的方法
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数应用解题技巧
(1)应用二次函数解决实际问题的一般思路:
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
考点名称:
一般地,形如y=kx+b(k&0,k,b是常数),那么y叫做x的一次函数。
当b=0时,y=kx+b即y=kx,即正比例函数(自变量和因变量成正比例)。
所以说正比例函数是一种特殊的一次函数。但不能说一次函数是正比例函数。
若自变量最高次数为1,则这个函数就是一次函数。
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k&0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k&0时,直线必通过第一、三象限,y随x的增大而增大;
当k&0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k&0,b&0, 这时此函数的图象经过第一、二、三象限;
当 k&0,b&0,这时此函数的图象经过第一、三、四象限;
当 k&0,b&0,这时此函数的图象经过第一、二、四象限;
当 k&0,b&0,这时此函数的图象经过第二、三、四象限。
当b&0时,直线必通过第一、二象限;
当b&0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k&0时,直线只通过第一、三象限,不会通过第二、四象限。
当k&0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k&0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k&0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。
考点名称:
求一次函数的解析式及一次函数的应用
一次函数的解析式求解一般需要知道函数的已知两个坐标,然后列出根据函数解析式y=kx+b求出参数k,b的值。
待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。
用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数
三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)
一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:&[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1&b2
9.如两条直线y1=k1x+b1&y2=k2x+b2,则k1&k2=-1
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:
二次函数图像
在平面直角坐标系中作出二次函数y=ax2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由y=y=ax2平移得到的。
二次函数图像是轴对称图形。对称轴为直线
对称轴与二次函数图象唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图象的对称轴是y轴(即直线x=0)。是顶点的横坐标(即x=?)。
a,b同号,对称轴在y轴左侧
a,b异号,对称轴在y轴右侧
二次函数图象有一个顶点P,坐标为P(h,k)。
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k,
二次项系数a决定二次函数图象的开口方向和大小。
当a&0时,二次函数图象向上开口;当a&0时,抛物线向下开口。
|a|越大,则二次函数图象的开口越小。
二次函数抛物线的主要特征
①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c 表示抛物线与y轴的交点坐标:(0,c)。
决定对称轴位置的因素
一次项系数b和二次项系数a共同决定对称轴的位置。
当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号
当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值,可通过对二次函数求导得到。
考点名称:
平行四边形的定义:
两组对边分别平行的四边形称为平行四边形。平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。
平行四边形的判定:
两组对边分别相等的平面四边形是平行四边形;
两组对角分别相等的平面四边形是平行四边形;
邻角互补的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两组对边分别平行的四边形是平行四边形;
对角线相交且互相平分的四边形是平行四边形;
一组对角相等且一组对边相等的平面四边形是平行四边形;
一组对角相等且一组对边平行的四边形是平行四边形。
平行四边形的性质:
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为&平行四边形的两组对边分别相等&)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为&平行四边形的两组对角分别相等&)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为&平行四边形的邻角互补&)
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为&平行四边形的对角线互相平分&)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等分。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
相关练习题推荐
与“如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛”相关的知识点试题(更多试题练习--)
微信沪江中考
CopyRight & 沪江网2016已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,已知直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=.
(1)求抛物线的解析式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(3)如图2,过点A作x轴的垂线,交直线MC于点Q,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少单位长度?向下最多可平移多少个单位长度?
(1)由直线解析式可知OC=3,在Rt△OBC中,根据cos∠BCO=,解直角三角形可得OB=1,将B、C两点坐标代入抛物线解析式,可确定抛物线解析式;
(2)存在.由抛物线解析式得M(-1,-4)得出直线MN解析式,根据△OCN的特殊性,分别过N、C两点作CN的垂线,求出P点坐标;
(3)设平移后抛物线解析式为y=(x+1)2+m,当抛物线与直线MN只有一个交点时,联立抛物线与直线解析式,方程组有一个解,当抛物线经过N、Q时,分别求m的值,确定平移的长度.
解:(1)由y=kx-3,可知OC=3,
在Rt△OBC中,∵cos∠BCO=,
∴BC=,OB=2-OC2
将B((1,0))、C(0,-3)代入抛物线解析式,
a(0+1)2+c=-3
∴抛物线解析式为y=(x+1)2-4;
(2)存在.由抛物线解析式得M(-1,-4),
设直线MN解析式为y=kx+b,则,
∴y=x-3,N(3,0),
△OCN为等腰直角三角形.
过N点作CN的垂线交y轴于(0,3),垂线解析式为y=-x+3.
得P点坐标为(,)或(,),
连接AC,则A(-3,0)点满足题意,
∴P点坐标为(,)或(,)或(-3,0);
(3)设平移后抛物线解析式为y=(x+1)2+m,
①当抛物线与直线MN只有一个交点时,联立2+m
,得x2+x+m+4=0,
当方程组有一个解时,△=0,即1-4(m+4)=0,解得m=-,
∴向上平移4-=个单位,
②当抛物线经过N(3,0)时,(3+1)2+m=0,解得m=-16,
当抛物线经过Q(-3,-6)时,(-3+1)2+m=-6,解得m=-10,
∴向下平移16-4=12个单位.
即抛物线向上最多可平移个单位长度,向下最多可平移12个单位长度.,伴随直线的解析式;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.
分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此△>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=-2x2+1,y=-2x+1;(2)将y=-x2-3和y=-x-3组成方程组得,y=-x2-3y=-x-3,解得,x1=0y1=-3或x2=1y1=-4.则原抛物线的顶点坐标为(1,-4),与y轴的交点坐标为(0,-3).设原函数解析式为y=n(x-1)2-4,将(0,-3)代入y=n(x-1)2-4得,-3=n(0-1)2-4,解得,n=1,则原函数解析式为y=(x-1)2-4,即y=x2-2x-3.(3)∵伴随抛物线的顶点是(0,c),∵设它的解析式为y=m(x-0)2+c(m≠0),∵此抛物线过P(-b2a,4ac-b24a),∴4ac-b24a=m•(-b2a)2+c,解得m=-a,∴伴随抛物线解析式为y=-ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(-b2a,4ac-b24a)在此直线上,∴4ac-b24a=-b2ak+c,∴k=b2,∴伴随直线解析式为y=b2x+c;(4)∵抛物线L与x轴有两交点,∴△1=b2-4ac>0,∴b2>4ac;∵x2>x1>0,∴x2+x1=-ba>0,x1•x2=ca>0,∴ab<0,ac>0.对于伴随抛物线有y=-ax2+c,有△2=0-(-4ac)=4ac>0,由-ax2+c=0,得x=±ca.∴C(-ca,0),D(ca,0),CD=2ca,又AB=x2-x1=(x2-x1)2=(x1+x2)2-4x1x2=(-ba)2-4ca=b2-4ac|a|,∵AB=CD,则有:2ca=b2-4ac|a|,即b2=8ac,综合b2=8ac,b2-4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).点评:本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.
请在这里输入关键词:
科目:初中数学
已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为.(1)求此抛物线的解析式;(2)求直线AC和BC的方程;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
科目:初中数学
廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).
科目:初中数学
已知抛物线y=ax2(a>0)上有A、B两点,它们的横坐标分别为-1,2.如果△AOB(O是坐标原点)是直角三角形,求a的值.
科目:初中数学
(;广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(),求当x≥1时y1的取值范围.
科目:初中数学
已知抛物线经过点A(1,0)、B(2,-3)、C(0,4)三点.(1)求此抛物线的解析式;(2)如果点D在这条抛物线上,点D关于这条抛物线对称轴的对称点是点C,求点D的坐标.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!

我要回帖

更多关于 已知两点求抛物线方程 的文章

 

随机推荐