锻造法兰盘加工的法兰常见的缺陷有哪些

查看: 1496|回复: 6
锻造过程中常见的缺陷类型及产生原因大汇总
马上注册,结交更多热工坛友,更多精彩内容等着您!
才可以下载或查看,没有帐号?
原材料的主要缺陷及其引起的锻件缺陷&&名 称&&主 要 特 征产&&生&&原&&因&&及&&影&&响毛&&细&&裂&&纹& & 位于金属表面,深约0.5~1.5mm的细微裂纹。& & 金属轧制时,将钢锭内的皮下气泡辗长后破裂形成的。锻造前若不去掉,可能引起锻件裂纹。折&&迭& & 在金属表面深达1mm左右,在直径两端折缝方向相反。横向观察,折迭同圆弧切线构成一角度,折缝内有氧化铁夹杂,四周有脱碳。& & 因轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,导致形成折迭。&&& & 锻造前若不去掉,可能引起锻件折迭。结&&疤& & 轧材表面局部区域的一层可剥落的薄膜,其厚度约1.5mm左右。& & 浇铸时,由于钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜而粘附在轧材表面,即为结疤.&&& & 锻后经酸洗清理,薄膜剥落成为锻件表面缺陷.层&&状&&断&&口& & 断口或断面与折断了的石板、树皮很相似.这种缺陷在合金钢(铬镍钢、铬镍钨钢等)中较多,碳钢中也有发现.主要是原材料冶炼质量的问题,往往在轴心部分出现。一般认为,钢中存在非金属夹杂物,枝晶偏析以及气孔、疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片状。&&杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向机械性能很低,钢材如有明显的层片状缺陷是不合格的。名&&称主&&要&&特&&征产&&生&&原&&因&&及&&影&&响亮&&线&&(亮区)& & 在纵向断口中呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。亮线主要是由于合金元素偏析造成的。&&轻微的亮线对机械性能影响不大,严重的亮线将明显降低材料的塑性和韧性。非金属夹&&杂& & 在轧制的纵断面上表现为被轧长了的或被破碎的非金属夹杂。前者如疏化物,后者如氧化物、脆性硅酸盐。& & 非金属夹杂物主要是熔炼或浇铸的钢水冷却过程中由于成分之间或金属与炉气、容器的化学反应形成的。另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。&&严重的夹杂物易引起锻造开裂或降低材料使用性能。碳化物偏析& & 经常在含碳高的合金钢中发现(如:高速钢等),其特点是局部区域有较多的碳化物集聚。& & 钢中的莱氏体共晶碳化物和二次网状碳化物在开坯和轧制时未被打碎和均匀分布造成的。&&& & 碳化物偏析降低钢的锻造变形性能,易引起锻件开裂。锻件热处理淬火时容易局部过热、过烧和淬裂。制成的刀具使用时刃口易崩裂。铝合金氧化膜& & 一般多位于模锻件的腹板上和分模面附近。在低倍组织上呈微细的裂口,在高倍组织上呈涡纹状,在断口上的特征可分两类:其一,呈平整的片状,颜色从银灰色、浅黄色直至褐色、暗褐色;其二,呈细小密集而带闪光点的点状物。& & 熔铸过程中敞露的熔体液面与大气中的水蒸气或其他金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷入液体金属材料的内部形成的。&&& & 锻件和模锻中的氧化膜对纵向机械性能无明显影响,但对高度方向机械性能影响较大,它降低了高度方向强度性能,特别是高度方向伸长率、冲击韧性和高度方向抗腐蚀性能。异金属夹杂物& & 与基体金属有明显的界限。& & 熔炼时外来金属混入的。异金属的存在,降低了零件的使用性能,且易引起锻件各种形式的裂纹。白&&点& & 在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口中呈细小的裂纹。白点的大小不一,长度由1~20mm或更长。&&& & 白点在合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。& & 白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力加工后冷却(或锻后热处理)太快时较易产生。&&& & 用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。白点降低钢的塑性和零件的强度,是应力集点,它象尖锐的切刀一样,在交变载荷的作用下,很容量变成疲劳裂纹而导致疲劳破坏。粗晶环& & 经热处理后供应的铝及其合金挤压棒材,在其圆断面的外层常常有粗晶环。粗晶环的厚度,由挤压时的始端到末端是逐渐增加的。若挤压时的润滑条件良好,则在热处理后可以减小或避免粗晶环。反之,环的厚度会增加。& & 粗晶环的产生原因与很多因素有关。但主要因素是由于挤压过程中金属与挤压筒产生的摩擦。这种摩擦致使挤出来的棒材横断面的外表层晶粒要比棒材中心层晶粒的破碎程度大得多。但是由于筒壁的影响,此区温度低,挤压时未能完全再结晶,淬火加热时未再结晶的晶粒再结晶并长大吞并已经再结晶的晶粒,于是在表层形成了粗晶环。&&& & 有粗晶环的坯料锻造时容易开裂,如粗晶环保留在锻件表层,则将降低零件的性能。缩&&管&&残&&余& & 缩管残余附近区或一般会出现密集的杂夹物、疏松或偏析。在横向低部中呈不规则的皱折的缝隙。& & 一般是由于钢锭冒口部分产生的集中缩孔未切除干净,开坯和轧制时残留在钢材内部而产生的。
锻后冷却不当产生的缺陷&&名&&称&&主&&要&&特&&征产&&生&&原&&因&&及&&影&&响冷 却裂&&纹裂纹光滑细长。在圆形截面的锻件中有时裂纹呈圆形。冷却太快,产生较大的热应力或组织转变引起的组织应力(例如:马氏体钢冷却过快发生马氏体的激烈转变,往往产生裂纹),使锻件出现裂纹。网 状碳化物碳化物沿晶界呈网状析出。在含碳量高的钢中常见。由于停锻温度高,冷却速度过慢,造成碳化物沿晶界析出(例如:轴承钢在870~770℃缓冷,则碳化物沿晶界析出)。网状碳化物在热处理时易引起淬火裂纹。另外,它还使零件的使用性能变坏
锻后热处理工艺不当产生的缺陷&&名&&称&&主&&要&&特&&征产&&生&&原&&因&&及&&影&&响硬度过高或硬度不够硬度不符合规定要求(硬度不够或过高)。淬火温度太低,淬火加热时间太短、回火温高太高、多次加热引起表面严重脱碳、钢的化学成分不合格等,皆会造成硬度不够 。正火后冷却太快,正火或回火加热泪盈眶时间太短,或钢的化学成分不合格,则能造成硬度过高。硬 度不&&均在同一锻件的几个不同部位测得的硬度相差很大。热处理工艺不当(一次装炉太多,保温时间太短)或加热引起局部脱碳等。
清 理时 产 生 的 缺 陷&&名&&称&&主&&要&&特&&征产& && &生& && &原& && &因&&酸 洗过&&度锻件表面呈疏松多孔状。酸的浓度过高和锻件在酸洗槽中停留时间太长,或由于锻件表面酸洗不净,酸液残留在锻件表面上。腐 蚀裂&&纹马氏体不锈钢锻件酸洗清除氧化皮后,有时发现表面有细小网状裂纹。高倍观察表明,裂纹沿晶界扩展,呈树枝状形态。锻后残余应力未消除。
坯料剪切和切割时产生的缺陷及其引起的锻件缺陷&&名&&称&&主&&要&&特&&征产& &生&&原&&因&&及&&影&&响切&&斜& & 坯料端面与轧线倾斜,超过了规定的允许值。& & 剪切时棒料未压紧造成的。坯料端部弯曲并带毛刺& & 坯料时部分金属被带入剪刀间隙之间,产生尖锐的毛刺。被切断之前已有弯曲,结果部分金属被挤入刀片之间,形成端部下垂毛刺。&&有毛刺的坯料,加热易引起局部过热过烧,锻造时易产生折迭和开裂。名&&称主&&要&&特&&征产&&生&&原&&因&&及&&影&&响端&&部&&裂&&纹& & 主要产生在剪切大断面坯料时,如冷状态下剪切合金钢和高碳钢时也会产生长。通常是在剪切后3~4小时才发现。& & 由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现开裂。材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹。气&&割&&裂&&纹& & 一般位于坯料端部。由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。&&有气割裂纹的坯料,锻造时裂纹将进一步扩展。凸&&芯&&开&&裂& & 一般位于原坯料端面的中心。& & 车床下料时,在棒料的端面往往留有凸芯。锻造过程中,由于凸芯的断面很小,冷却快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高。因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。
加热不当产生的缺陷&&名&&称&&主&&要&&特&&征产&&生&&原&&因&&及&&影&&响过&&热& & 一般是指金属由于加热温度过高引起粗大晶粒的现象。碳钢(亚共析钢或过共析钢)以出现魏氏组织为特征。工模具钢(或高合金钢)以一次碳化物角状化为特征。一些合金结构钢过热后除晶粒粗大外,沿晶界还有析出物,而且用一般热处理办法也不易消除。& & 加热温度过高,或在规定的锻造与热处理温度范围内停留时间太长,或由于热效应而引起的。&&& & 过热组织由于晶粒粗大,将引起机械性能降低,尤其是冲击性能。过&&烧过烧严重的金属,镦粗时轻轻一击就裂,拔长时在过烧处出现横向裂口。&&过烧部位的晶粒特别粗大。裂口间的表面呈浅灰蓝色。过烧的铝合金锻件,表面呈黑色或暗黑色,并且表面形成鸡皮状气泡。从高倍组织看,一般以晶界氧化和熔化现象为特征。对碳钢来说,晶界出现氧化和熔化;工模具钢(高速钢、铬12型钢)过烧时晶界熔化而出现鱼骨状莱氏体;铝合金过烧往往出现晶界熔化三角区域或复熔球等。& & 加热温度过高或高温加热时间过长引起的。炉中的氧及其他氧化性气体渗透到金属材料晶粒间,并与铁、硫、碳等氧化,形成了易熔的氧化物的共晶体,它破坏了晶粒间的联系。铜&&脆& & 锻造时锻件表面龟裂。高倍观察,有淡黄色的铜(或铜的固溶体)沿晶界分布。& & 炉内残存氧化铜屑,加热时氧化铜还原为自由铜,熔融的铜原子在高温下沿奥氏体晶界扩展,削弱了晶粒间的联系。另外,钢中含铜量较高(>2%)时,如在氧化性气氛中加热,在氧化皮下形成富铜层,也引起铜脆。加&&热&&裂&&纹沿坯料的横断面开裂,裂纹由中心向四周呈辐射状扩展。由于坯料尺寸大,钢的导热性差,加之加热速度过快,形成坯料内外温度相差很大,产生的热应力超过坯料的强度极限所致。&&这种缺陷多产生于高合金钢和高温合金加热中石&&状&&断&&口在纤维断口基体上,呈现不同取向、无金属光泽、灰白色粒状断面。石状断口多发生于锻件的表面部分。它是由严重过热引起的。该断面相当于钢过热时形成的粗大奥氏体晶界面。钢料过热后冷却时MnS等异相质点沿粗大奥氏体晶界析出。当钢由于调质使基体的韧性增强后折断时,则断裂沿原来的奥氏体晶界面发生。这样,在纤维状断口基体上就呈现出许多小平面,形成石状断口。&&严重的石状断口不能用普通的热处理方法加以改善,具有石状断口的锻件的冲击值下降。名&&称主&&要&&特&&征产&&生&&原&&因&&及&&影&&响脱&&碳锻件表层的含碳量较内部明显降低,在高倍组织上表层渗碳体的数量减少,在机械性能上表层的硬度或强度下降。金属在高温下表层的碳被氧化。脱碳层的深度与钢的成分、炉气成分、温度和在此温度下的保温时间有关。采用氧化性气氛加热易发生脱碳,高速钢易脱碳,含硅量多的钢也易脱碳。&&脱碳零件的强度和疲劳性能下降,磨损抗力减弱。增&&碳经油炉加热的锻件,其表或部分表面发生增碳现象。有时增碳层厚度达1.5~1.6mm,增碳层含碳量达1%左右,局部点含碳量甚至超过2%,出现莱氏体组织.坯料在油炉里加热时,两个喷油嘴的喷射交叉区得不到充分燃烧,造成渗碳气氛,或喷嘴雾化不良喷出油滴,使锻炼件的表面出现增碳现象.&&增碳使锻件的机械加工性能变坏,切削时易打刀.9Cr18不锈钢轴承链状碳化物9Cr18不锈钢锻造及退火后出现孪晶组织,而且退火组织中一次碳化物沿孪晶线呈链状析出。锻造加热温度超过1160℃是出现孪晶及退火后出现链状碳化物的原因。&&链状碳化物析出使钢的冲击韧性下降(这种缺陷属于稳定过热)。热透不足引起心部开裂心部开裂常在坯料的头部,其开裂深度与加热和锻造有关,有时裂纹贯穿整个坯料。锻造高合金钢时,坯料在高温区加热到锻造温度后,保温时间不足,坯料未热透,坯料内部温度低,外部温度高。锻造时,外部温度高,塑性好、变形大,而内部温度低,塑性差,变形小,甚至没有变形。由于严重的不均匀变形,引起金属坯料心部开裂。铝合金锻件表面气泡在水中铲除气泡表层,可发现气泡内有气体逸出。在气泡内壁上灰黑色的、类似燃烧后的产物,如同树木的年轮。气泡内壁不是撕裂的断口,而是呈波纹的光滑表面。1.由挤压坯料表面气泡带来的。&&2.在高温下加热(热处理或锻造加热跑温)时,铝合金,特别是含镁量高的铝合金与炉内水蒸气发生作用形成的。&&3.火焰炉炉气中存在有硫,或者电炉中加热时锻件表面残留有含硫的润滑剂。
锻造工艺不当产生的缺陷&&名&&称&&主&&要&&特&&征产&&生&&原&&因&&及&&影&&响大晶粒在锻件低倍上晶粒粗大。始锻温度过高和变形程度不足;终锻温度过高;变形程度落入临界变形区;铝合金变形程度过大,形成织构;高合金变形温度过低,形成混合变形组织等,均能形成粗大晶粒。&&粗晶使锻件的塑性、韧性降低,疲劳性能明显下降。晶&&粒&&不均匀锻件某些部位的晶粒特别粗大,某些部位却较小,形成整个锻炼件内部晶粒大小不均。&&耐热钢及高温合金对晶粒不均匀特别敏感。变形不均匀使晶粒破碎不一,或局部区域变形程度落入临界变形区,高温合金局部加热硬化,淬火加热时局部晶粒粗大。&&晶粒不均匀使锻件的持久性能、疲劳性能等明显下降。冷 硬现&&象热锻后锻炼件内仍部分保留冷变形组织,锻件的强度和硬度比正常热锻的要高,而塑性和韧性下降。变形时温度偏低或变形速度太快,以及锻后冷却过快,以致再结晶引起的软化跟不上变形引起的强化(硬化),从而出现热加工后的冷硬现象。脱碳层堆&&积锻件上局部地方脱碳层堆积,硬度低于正常组织部位的硬度。这种缺陷是由于锻造工艺不当引起的。例如,圆棒料拔长时由于锤击过重,压下量过大,翻转90°压缩时形成双鼓形,再拔长时,双鼓形成的金属一部分向外流动,增加宽度,一部分金属向中心流动,因而形成中心区的脱碳层的堆积现象。十字 裂&&纹裂纹沿锻件横断面的对角线方向分布,其长度不一,有时可能完全贯穿整个坯料。这种缺陷在低塑料性的高速钢、高铬钢的拔长工序中常出现。这是在反复对坯料进行翻转发90°的拔长过程中,送进量过大,且在同一处反复重击造成的。矩形断面坯料在平砧下拔长时,对角线两侧金属进行剧烈的交错流动,产生很大的交变剪切,当切变程度或切变应力超过材料允许的数值时,便沿对角线方向产生裂纹。名&&称主&&要&&特&&征产&&生&&原&&因&&及&&影&&响龟&&裂锻炼件表面出现较浅的龟状裂纹。1.原材料含Cu、Sn等易熔元素量过多;&&2.高温长时间加热时,钢表面铜析出、表面晶粒粗大、脱碳,或经多次加热的表面;&&3.燃料中含硫量过高;&&4.锻件形成中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。飞 边裂&&纹模锻及切边时,在分模面处产生的裂纹。在模锻操作中,由于重击使金属强烈流动产生穿筋现象;镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。分模面裂 纹锻件沿分模面开裂。原材料非金属夹杂物多,锻造时向分模面流动与集中,或轧制过的原材料缩孔或疏松的边缘挤入飞边后形成。孔 边龟&&裂在冲孔边缘有龟裂或裂纹,铬钢冲孔时出现较多。主要是冲孔芯子没有预热、预热不够或冲孔变形太大造成。裂&&纹锻炼件的完整性被破坏。1.坯料表面和内部有微裂纹,锻造时进一步扩展;&&2.坯料内存在组织缺陷或热加工温度不当,使材料塑性下降;&&3.锻造时存在较大的拉应力、剪应力或附加拉应力;&&4.变形速度过快,变形程度过大。锻 造折&&迭折纹与金属流线方向一致,折纹尾端一般呈小圆角。但随后锻造变形又会使折迭发生开裂,使折纹的尾端呈尖角形。一般折纹两侧有较重的氧化脱碳现象,在个别情况下也有发生增碳现象。折迭是金属变形过程式中已氧化过的表层金属汇合在一起而形成的。与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作等有关。折迭不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源。穿&&流穿流是流线分布不当的一种形式。在穿流区,原先成一定角度分布的流线汇合在一起。穿流区内。外晶粒大小常常相差较悬殊穿流产生的原因与折迭相似,它是由两股金属或一股金属带着另一股金属汇流而形成的,但穿流部分的金属仍是一整体。&&穿流使锻件的机械性能降低,尤其当穿流带两侧晶粒相差较悬殊时,性能降低较明显。锻件流线分布不&&当在锻件低倍上发生流线切断、回流、涡流等流线紊乱现象。1.模具设计不当或锻造方法选择不合理,预制毛坯流线紊乱;&&2.操作不当及模具磨损使金属产生不均匀流动。带 状组&&织铁素体和珠光体、铁素体和奥氏体、铁素体和贝氏体以及铁素体和马氏体在锻件中呈带状分布的一种组织,它们多出现在亚共析钢、奥氏体钢和半马氏体钢中。这种组织,是在两相共存的情况下锻造变形产生的;&&带状组织能降低材料的横向塑性指标,特别是冲击韧性。在锻造或零件工作时常易沿铁素体带或两相交界处开裂 。剪切带锻件横向低倍上出现波浪状的细晶区,多出现在钛合金和低温锻造的高温合金锻件中。由于钛合金和高温合金对激冷敏感性大,在模锻过程中,坯料接触表面附近难变形区逐步扩大,在难变形区间发生强烈剪切变形所致。结果形成了强烈的方向性,使锻炼件性能降低。碳化物偏析级别不符合要求碳化物分布不均匀 ,呈大块状集中分布或呈网状分布。这种缺陷主要出现于莱氏体工模具钢中。原材料碳化物偏析级别差,加之改锻时锻比不够或锻造方法不当;&&具有这种缺陷的锻件,热处理淬火时容易局部过热和淬裂。制成的刃具和模具使用时易崩刃等。锻造组织残留在锻件组织中,存在有铸态组织。主要是出在用铸锭作坯料的锻件中。铸态组织主要残留在锻件的困难变形区锻比不够和锻造方法不当。这种缺陷使锻件的性能下降,尤其是冲击韧性和疲劳性能等。名&&称主&&要&&特&&征产&&生&&原&&因&&及&&影&&响铜合金锻件应力腐蚀&&开 裂(季裂)主要产生于含锌的黄铜中。低倍和高倍观察表明,裂纹的扩展呈树枝状形态。锻造时变形不均匀,锻后又未及时退火,使锻件内存在残余应力;&&存在残余应力的锻件,在潮湿的空气中,特别是在含氨盐的大气中放置时会引起应力腐蚀开裂 。
很实用的资料
感谢分享。
Powered by  国内某厂法兰制作的全过程,从下料、锻造、机加工、探伤等等全过程的展示,真不赖!
友情提示,建议在wifi下欣赏,留着流量学知识!
  来源:机械小子
热门图书排行
免责声明:本文系网络转载,版权归原作者所有。但因转载众多,无法确认真正原始作者,故仅标明转载来源。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并按国家标准支付稿酬或删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。
  温馨提示
  锻压世界小编来啦!!!
  这里有
  锻压世界-锻造群
  锻压世界-冲压群
  锻压世界-钣金群
  更直接、更激烈、更实际,更精彩
声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。一列列车行驶在北京居庸关长城附近盛开的山桃花海中。
上了年纪的大爷大妈准点前来,早出晚归,堪比上下班。
声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
  锻造加工的金属产品又叫做锻件,影响锻件质量的条件有很多种,首先原材料的控制是锻件产品质量的先决条件。那么今天小编为大家介绍一下,原材料的主要缺陷及其引起的锻件缺陷主要由以下几种。
毛细裂纹:
  位于金属表面,深约0.5~1.5mm的细微裂纹。金属轧制时,将钢锭内的皮下气泡辗长后破裂 形成的。锻造前若不去掉,可能引起锻件裂纹。
  在金属原材料表面深达1mm左右,在直径两端折缝方向相反。横向观察,折迭同圆弧切线构成一角度,折缝内有氧化铁夹杂,四周有脱碳。
  因轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,导致形成折迭。锻造前若不去掉,可能引起锻件折迭。
  轧材表面局部区域的一层可剥 落的薄膜,其厚度约1.5mm左右。浇铸时,由于钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜而粘附在轧材表面,即为结疤。锻后经酸洗清理,薄膜剥落成为锻件表面缺陷。
层状断口:
  断口或断面与折断了的石板、树皮很相似.这种缺陷在合金钢(铬镍钢、铬镍钨钢等)中较多,碳钢中 也有发现。
  主要是原材料冶炼质量的问题,往往在轴心部分出现。一般认为,钢中存在非金属夹杂物,枝晶偏析以及气孔、疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片状。 杂质过多,锻造就有分层破裂的危险。层状断口越严重,钢的塑性、韧性越差,尤其是横向机械性能很低,钢材如有明显的层片状缺陷是不合格的。
  在纵向断口中呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。亮线主要是由于合金元素偏析造成的。 轻微的亮线对机械性能影响不大,严重的亮线将明显降低材料的塑性和韧性。
非金属夹杂:
  在轧制的纵断面上表现为被轧长了的或被破碎的非金属夹杂。前者如疏化物,后者如氧化物、脆性 硅酸盐。非金属夹杂物主要是熔炼或浇铸的钢水冷却 过程中由于成分之间或金属与炉气、容器的化学反应形成的。另外,在金属熔炼和浇铸时,由于耐火材料落入钢液中,也能形成夹杂物,这种夹杂物统称夹渣。 严重的夹杂物易引起锻造开裂或降低材料使用性能。
碳化物偏析:
  经常在含碳高的合金钢中发现 (如:高速钢等),其特点是局部区域有较多的碳化物集聚。钢中的莱氏体共晶碳化物和二次网状碳化物在开坯和轧制时未被打碎和均匀分布造成的。碳化物偏析降低钢的锻造变形性能,易引起锻件开裂。锻件热处理淬火时容易局部过热、过烧和淬裂。制成的刀具使用时刃口易崩裂。
铝合金氧化膜:
  一般多位于模锻件的腹板上和分模面附近。在低倍组织上呈微细 的裂口,在高倍组织上呈涡纹状, 在断口上的特征可分两类:其一, 呈平整的片状,颜色从银灰色、浅黄色直至褐色、暗褐色;其二,呈细小密集而带闪光点的点状物。
  熔铸过程中敞露的熔体液面与大气中的水蒸气或其他金属氧化物相互作用时所形成的氧化膜在转铸过程中被卷入液体金属材料的内部形成的。 锻件和模锻中的氧化膜对纵向机械性能无明显影响,但对高度方向机械性能影响较大,它降低了高度方向强度性能,特别是高度方向伸长率、冲击韧性和高度方向抗腐蚀性能。
异金属夹杂物:
  与基体金属有明显的界限。熔炼时外来金属混入的。异金属的存在,降低 了零件的使用性能,且易引起锻件各种形式的裂纹。
  在钢坯的纵向断口上呈圆形或椭圆形的银白色斑点,在横向断口中呈细小的裂纹。白点的大小不一,长度由1~20mm或更长。白点在合金钢中常见,普通碳钢中也有发现,是隐藏在内部的缺陷。
  白点是在氢和相变时的组织应力以及热应力的共同作用下产生的,当钢中含氢量较多和热压力 加工后冷却(或锻后热处理)太快时较易产生。 用带有白点的钢锻造出来的锻件,在热处理时(淬火)易发生龟裂,有时甚至成块掉下。白点降低钢的塑性和零件的强度,是应力集点,它象尖锐的切刀一样,在交变载荷的作用下,很容量变成疲劳裂纹而导致疲劳破坏。
  经热处理后供应的铝及其合金挤压棒材,在其圆断面的外层常常有粗晶环。粗晶环的厚度,由挤压时的始端到末端是逐渐增加的。若 挤压时的润滑条件良好,则在热处 理后可以减小或避免粗晶环。反之,环的厚度会增加。
  粗晶环的产生原因与很多因素有关。但主要因 素是由于挤压过程中金属与挤压筒产生的摩擦。这种摩擦致使挤出来的棒材横断面的外表层晶粒要比棒材中心层晶粒的破碎程度大得多。但是由于筒壁的影响,此区温度低,挤压时未能完全再结晶, 淬火加热时未再结晶的晶粒再结晶并长大吞并已 经再结晶的晶粒,于是在表层形成了粗晶环。有粗晶环的坯料锻造时容易开裂,如粗晶环保留在锻件表层,则将降低零件的性能。
缩管残余:
  缩管残余附近区或一般会出现密集的杂夹物、疏松或偏析。在横向低部中呈不规则的皱折的缝隙。一般是由于钢锭冒口部分产生的集中 缩孔未切除干净,开坯和轧制时残留在钢材内部而产生的。
  更多资讯请关注:
  微信:qzjcldz
欢迎举报抄袭、转载、暴力色情及含有欺诈和虚假信息的不良文章。
请先登录再操作
请先登录再操作
微信扫一扫分享至朋友圈
搜狐公众平台官方账号
生活时尚&搭配博主 /生活时尚自媒体 /时尚类书籍作者
搜狐网教育频道官方账号
全球最大华文占星网站-专业研究星座命理及测算服务机构
发布锻造知识技巧及锻件工艺方法
主演:黄晓明/陈乔恩/乔任梁/谢君豪/吕佳容/戚迹
主演:陈晓/陈妍希/张馨予/杨明娜/毛晓彤/孙耀琦
主演:陈键锋/李依晓/张迪/郑亦桐/张明明/何彦霓
主演:尚格?云顿/乔?弗拉尼甘/Bianca Bree
主演:艾斯?库珀/ 查宁?塔图姆/ 乔纳?希尔
baby14岁写真曝光
李冰冰向成龙撒娇争宠
李湘遭闺蜜曝光旧爱
美女模特教老板走秀
曝搬砖男神奇葩择偶观
柳岩被迫成赚钱工具
大屁小P虐心恋
匆匆那年大结局
乔杉遭粉丝骚扰
男闺蜜的尴尬初夜
客服热线:86-10-
客服邮箱:钛合金常见锻造缺陷及预防_锻造_中国百科网
钛合金常见锻造缺陷及预防
      钛合金由于具有低密度、高比强、耐高温、抗腐蚀及无磁性等优异的综合性能,使其成为当代航空航天领域最具前途的金属结构材料之一。随着钛合金的大量应用,其冶金质量问题也日益引起业界人士的广泛关注,于是钛合金的冶金质量显得越来越重要。
  目前工业钛合金80%以上以变形钛合金使用,如锻件、锻棒及轧制型材等形式。锻造变形是保证钛合金材料获得理想组织与性能的最主要手段,但是不正确的锻造工艺往往会使钛合金产品出现一些不理想的组织和冶金缺陷,从而恶化其力学性能,给钛合金产品的正常使用造成潜在危害,同时给生产及使用厂家造成大量浪费,故研究分析各种钛合金锻造缺陷的形成机理,并采取有效预防措施具有十分重要的价值。
  1. 锻造热效应
  某牌号高温钛合金铸锭在快锻机上开坯锻造后,在α+β两相区多火次加热锻造为φ 165mm棒材,热处理后观察其低倍组织为模糊晶组织,显微组织为等轴组织,为理想的α+β双相钛合金等轴组织,组织照片见图1a。将上述φ 165mm棒材锯切下料后,在相变点下50℃加热后,在30kN液压锤上将其锻成φ 110mm×110mm方坯,随后对方坯进行解剖分析时,发现其心部为清晰晶,显微组织照片见图1b,显微组织为α板条+β转,是典型魏氏组织,存在清晰的晶界,α属于钛合金中的过热组织,距离表面20~30mm为半清晰晶,显微组织照片见图1c,显微组织为α板条+α等轴+β转,α 等轴数量稀少,α板条数量居多,存在断续分布晶界α;距离表面0~20mm范围内为模糊晶。
  某批次φ80mm规格TC4钛合金棒材,其显微组织为典型等轴α组织(见图2a),初生α等轴含量达到70%以上。在940℃(合金相变点995℃)加热锤上模锻后,其模锻件心部显微组织见图2b,初生α等轴含量仅剩余15%左右,为锻造温度过热造成。
  钛合金在相变点(α+β/β转变温度)以上变形获得网篮组织或魏氏组织塑性、疲劳性能差,所以绝大多数钛合金产品技术标准中要求近α 型、α +β 型双相钛合金成品,显微组织一般是综合性能较好的等轴组织或双态组织,所以近α型、α+β型双相钛合金成品锻造一般选择在相变点以下30~60℃加热锻造。大量研究及工程实践证明,随着锻造加热温度的升高,双相钛合金显微组织中初生α等轴的含量明显降低,而α板条含量显著增加。也就是说双相钛合金在相变点以下加热时,随着加热温度升高,组织中初生α等轴逐步向β相转变,从而导致加热锻造后的钛合金显微组织中初生α等轴含量降低、形态变小,α板条含量增多,当加热锻造温度超过钛合金相变点之后,双相钛合金组织中的初生α等轴全部消失,为板条状网篮组织或魏氏组织。
  钛热导率为0.036c a l/c m?s?℃(1cal/cm?s?℃=418.68W/cm?K),室温时是铝的1/15,铁的1/5。钛合金在锤上锻造过程中,由于瞬时变形速率大(锤上变形7~9m/s)、打击频率高,造成合金内部流动应力过大,消耗大量机械能短时间内转化为内部热量,由于坯料心部变形较周围大且散热条件差,致使坯料内部温度升高、变形程度最大中心区域温度接近,甚至超过合金相变点,导致最终坯料中心显微组织中初生α等轴急剧减少,甚至全部消失,过热严重时组织转变为性能非常差的魏氏组织。以上典型两种双相钛合金经过锤上锻造后,其显微组织中的初生α等轴含量急剧减少,α板条含量相应增加,显微组织由理想的等轴组织转变为较差的魏氏组织,主要原因就是钛合金在瞬时剧烈变形过程中产生过热现象造成的。
  钛合金在锻造变形中,一般情况下中心部位是剧烈变形区,所以中心是温升最高的区域,将中心部位温升情况作为制订锻造工艺的主要依据。采用锻造速度较快的锻锤锻造钛合金时,必须考虑锻造过程中的中心热效应,不能连续重击坯料。钛合金锻造在有条件的情况下建议采用压力机或快锻机,该类锻造打击速度低,锻造过程中坯料瞬时应变速率较低,产生的变形热不是非常明显,同时有足够时间进行变形热扩散,不会导致瞬时心部温度明显增高。
  2. 组织不均匀
  某批次T C17钛合金模锻件进行显微组织观察时,发现其网篮组织中存在一定的大块状α相(俗称粗大α块)见图3。该TC17钛合金模锻件是采用亚β锻造工艺生产的(相变点上40℃加热模锻,锻后空冷),期望得到显微组织是均匀一致的网篮组织。
  这种粗大α块又称大白块,与网篮组织中细小的正常α条相比,在形态上表现为粗大、不均匀,由晶界向晶内生长,很少出现交错现象,其晶界面比较粗糙,凹凸不平,而正常α条的晶界面比较平滑。研究证明,这种粗大α块的显微硬度要比正常α条低约l0%,致使合金塑性与热稳定性能下降,影响了锻件质量,所以必须防止在钛合金中出现这种不均匀组织。钛合金在熔炼凝固过程中,由于各类合金元素的平衡分配系数≠1,致使后凝固的晶界处有α稳定元素富集与偏析,所以在其富集处α相首先析出,并沿晶界向晶内生长,从而形成了粗大α块,微区成分偏析是产生这种不均匀组织的根本原因。
  微区成分结晶偏析是由于平衡分配系数k0&1或k0&1造成的,合金先后结晶区域溶质浓度不同形成的偏析属于正常偏析,这种偏析很难完全避免,但可用适当措施加以控制。一方面通过改进优化铸锭熔炼工艺参数加以控制,另一方面通过适当的锻造工艺加以改善消除。锻造工艺方面,首先在其铸锭开坯锻造时,采用适当的高温均匀化处理,对于铸锭柱状组织区域的微观晶内枝晶偏析通过均匀化退火或变形再结晶改善和消除;其次在合金坯料及成品模锻过程中采用适当的锻后冷却方式加以控制,抑制其显微组织中出现粗大α块。上述TC17钛合金锻件在亚β模锻后,采用空冷是其出现粗大α块的诱因,锻后冷却速度慢,过冷度小,形核率低,因而α相有足够时间长大形成粗大α块。
  亚β 锻后采用快冷(水冷或油冷)可明显减轻或抑制粗大α块出现,加快冷却速度、增加过冷度,可提高α相形核率,尽管局部区域存在合金元素偏聚,具备生长粗大α块的条件,但α相还没来得及长大与兼并,整个组织的相变过程已经结束了,控制冷速可以显著改变析出α相形态与分布规律。锻后水冷或油冷将锻造产生的晶体缺陷(位错、亚晶)和位错密度增加的变形组织全部或部分固定到室温,为随后热处理过程中再结晶增加了大量的结晶核心,在随后热处理时,β相的析出机制由空冷条件下的感生形核机制变为独立形核方式,得到细小、混乱、交织的条状初生α和次生α,这种组织可以显著提高合金的综合性能。
  3. 空洞型缺陷
  某批次φ 70mm规格TA7钛合金棒材在出厂超声波检测时发现超标缺陷波,对其缺陷位置解剖后进行了横向低倍检查,腐蚀后低倍上发现大量“麻坑”,主要就集中在棒材中心区域,棒材1/4半径之外区域则未发现“麻坑”。随后对麻坑处进行了高倍观察,发现其为晶间空洞类缺陷,缺陷处显微组织照片见图4。有的研究认为“麻坑”现象与腐蚀有关, 随腐蚀时间增加,“麻坑”现象越明显;也有的研究认为“麻坑”可能与杂质元素Fe 含量较多有关。但是上述观点很难解释超声波检测存在超标缺陷波的现象及高倍分析中发现的空洞现象。
  大量工程实践证明,TA7锻造工艺性能较其他TC4、TC11等钛合金要差,锻造过程中比其他钛合金更易发生开裂,且裂纹扩展速率快。钛、铝合金等金属材料在进行大应变(如超塑成形)时易诱发疏松,出现空洞甚至发生断裂,TA7钛合金中空洞就是大应变诱发产生的。在高应变率下,TA7钛合金的流变应力较静态下显著增加,但塑性显著降低;随着应变率增加,流变应力应变增加,但存在一个临界应变率,超过临界值,材料将发生断裂;当应变率达到临界值时,材料中产生绝热剪切带,并在带中形成微空洞,在外加应力作用下,空洞逐步聚集长大甚至形成微裂纹。微空洞总是沿最大剪切变带形成,这是因为在局域化变形中, 最大剪切带内变形剧烈从而温度较高,使带内材料软化,成为裂纹、空洞等缺陷产生的理想场所,TA7棒材在锻造过程中棒材中心区域变形量最大且变形热扩散最慢,变形温度最高,故在大变形过程中最易出现空洞。
  研究表明,金属材料塑性变形过程中伴随着组织形态的变化,主要有晶粒长大、等轴晶拉长、晶粒转动和滑动、位错增殖、动态回复和再结晶及空洞形核和长大等。晶界滑移是塑性变形的主要机制,晶界滑移会引起局部应力集中,阻碍晶界滑移的进一步发生,当应力集中无法借助位错运动消除时,空洞就会形核,继而发生长大。空洞优先在三角晶界处形核,随着变形量增加,空洞开始长大,且空洞并非以等轴状态长大,而是以椭圆形的方式长大。空洞易向平行拉应力分享的晶界扩散,从而在拉应力方向形成定向的空位流,不断向空洞中心聚集,使空洞得以沿平行于拉伸方向长大。大量文献中提到该合金锻造过程中易出现“麻点”和空洞,通过对TA7钛合金“麻点”及孔洞类缺陷形成机理分析,我们总结出了一套防止TA7钛合金锻件空洞类缺陷的有效办法,就是严格控制每火次变形量≤50%,严格控制变形速率,最好采用油压机或水压机锻造,尽量避免采用锤上锻造,在生产中取得了良好效果。
  4. 结语
  目前钛合金中常见的锻造缺陷主要有组织过热及不均、空洞、裂纹等,这些缺陷一般在钛合金产品显微组织检查或超声波检测中很易发现,主要是在钛合金产品锻造过程中工艺参数控制不当形成的,所以在锻造过程中需依据不同特性的钛合金材料选择合适的变形速率(锻造设备)、加热锻造温度、道次变形量及锻后冷却速度。
  作者简介: 张利军、郭凯、张晨辉,西安西工大超晶科技发展有限责任公司。
  何春艳,西部钛业有限责任公司质量管理部。
  薛祥义,西北工业大学凝固技术国家重点实验室。
收录时间:日 07:32:11 来源:金属加工在线 作者:张利军,郭凯等
上一篇: &(&&)
创建分享人
喜欢此文章的还喜欢
Copyright by ;All rights reserved. 联系:QQ:

我要回帖

更多关于 锻造法兰厂家 的文章

 

随机推荐