传送rfid文档rfid加密算法技术后的文档会被追踪到吗?

服装零售企业试点采用RFID技术追踪顾客试穿行为信息
来源:RFID世界网
摘要:2016年,加拿大多伦多的时装店试点基于RFID射频识别技术的顾客追踪系统,在时装上安装RFID电子标签,在时装店的试衣间里面安装YXUK5超高频读写器对顾客的试穿行为进行追踪。
关键词:[0篇]&&[1942篇]&&[0篇]&&
  2016年,加拿大多伦多的时装店试点基于RFID射频识别技术的顾客追踪系统,在时装上安装RFID电子标签,在时装店的试衣间里面安装YXUK5超高频读写器对顾客的试穿行为进行追踪。2015年研发该系统,去年在多伦多时装店试点近10个周,该系统还在另外几家商店中实施。今年底,Moxie计划将在另外两家时装店以及第三方零售的十个分地点安装,具体时装店及时装企业的名称等详细信息不便透露。
  Moxie为世界各地的食品加工商和时装店提供性测量等其他零售相关服务。为更好地测量特定卖场顾客的购买行为信息,Moxie寻求一追踪解决方案。例如,顾客的行为数据可与POS数据相对比,分析出顾客的购买喜好,徘徊时间(顾客购买某一物品花费的时间)以及随后购买哪些商品等。
  为了降低安装成本,Moxie决定将临时RFID追踪系统推荐给时装店。RFID读写装置较易拆装,RFID电子标签粘贴在时装吊牌上,而不是内嵌在积分卡中,这样追踪的只是时装试穿的位置,不会暴露顾客个人的位置信息。然而,Moxie计划推出RFID积分卡解决方案,以便有针对性地为顾客提供商品折扣信息。
  Academia
RFID公司负责多伦多零售店的RFID追踪解决方案的研发与安装。该解决方案共包括25台YXUK8四端口RFID超高频读写器,采用YXU803C超高频读写天线覆盖整个试衣间。读写器读取服装吊牌上RFID电子标签,并将信息通过网络发送到Moxie的RFID数据处理软件。
  试点商店的面积约有418平方米。Academia
RFID公司还负责提供RFID中间件。通过中间件接收、解析的位置数据转发到Moxie的零售分析软件,然后对信息进行分析比对,得出具体有价值的位置信息。
  购买者试穿已经挑选好的时装时,试衣间读写器识别时装标签ID,该ID与顾客的购买行为信息相关联。通过数据进一步分析,得出顾客购买某商品的徘徊时间等信息。
  临时解决方案可以从一个商店移到另外一个,以得到有效的重复利用,与固定式解决方案相比,成本大大降低。据介绍,该解决方案的安装大约需要三个晚上。
  试点期间,Moxie发现读取的数据存在大量的冗余,其中一部分数据是公司并不需要的。这就需要进一步修改软件,过滤重复数据。
  Moxie Retail正向其他几家大型时装店推荐该RFID追踪解决方案,并计划推向世界其他地区。用户可以直接购买软硬件或是购买服务。
相关文章:8-298-298-268-268-25
关键字搜索:新闻中心:[0篇]&&[13393篇]&&[0篇]&&技术文章:[0篇]&&[1991篇]&&[0篇]&&解决方案:[0篇]&&[2324篇]&&[0篇]&&
图片文章:
最新发布产品
推荐技术文章
推荐解决方案& & 1 RFID技术及其安全隐私分析
& & RFID系统主要由阅读器、标签及后端数据库组成,如图1所示。
& & 目前RFID技术已经吸引了工业和学术界越来越多的关注,并已广泛地应用于供应链管理、门禁控制、电子钱包[1]等各种场合。然而RFID技术属于非接触式自动识别技术,其面临的安全隐私威胁主要有:
& & (1)非法读取。商业竞争者可通过未授权的阅读器快速读取超市的商品标签数据,获取重要的商业信息;
& & (2)位置跟踪。通过RFID标签扫描,依据标签的特定输出可对消费者位置进行跟踪定位;
& & (3)窃听。因RFID系统在前向信道的信号传输距离
& & 较远,窃听者可轻易窃取阅读器发出的信号数据;
& & (4)拒绝服务。人为的信号干扰使得合法阅读器不能正常阅读标签数据;
& & (5)伪装哄骗。通过伪装成合法标签,哄骗阅读器为其提供错误的数据;
& & (6)重放。根据窃听到的阅读器和标签问的数据通信,重复之前的通信行为从而获取数据信息。
& & 2 RFID安全隐私保护
& & RFID的安全隐私问题阻碍了RFID技术的进一步推广,引起了消费者的高度关注,加强对RFID 的安全隐私保护有着极其重要的意义。
& & 2.1前提与要求
& & 假定阅读器与后台数据库的通信是在一条安全可靠的有连接信道上进行,但阅读器与标签之间的无线通信易被窃听。要普及RFID技术,必须保证RFID标签的低成本实现。
& & 由于标准的安全机制要求的计算比较复杂,如SHA一1约需12K个门,这在低成本标签上无法实现,因此可采用低成本的单向Hash函数进行加密[2]。
& & 安全的RFID 系统应能抵御各种攻击,且考虑到较坏的情况,即使外人获得了标签内部的秘密数据,也应保证其无法追踪到跟标签有关的历史活动信息,即保证前向安全性。
& & 2,2典型方法
& & 典型的加强RFID安全隐私保护的访问控制方法主要有Hash锁、随机Hash锁和Hash链,它们都是基于单向Hash函数实现的。
& & 2.2.1 Hash锁(Hash k)[2]
& & 采用Hash锁方法控制标签的读取访问,其工作机制如下:
& & 锁定标签:对于唯一标志号为ID的标签,首先阅读器随机产生该标签的Key,计算metaID=Hash(Key),将metaID发送给标签;标签将metaID存储下来,进入锁定状态。阅读器将(metaID,Key,ID)存储到后台数据库中,并以metaID 为索引。
& & 解锁标签:阅读器询问标签时,标签回答metaID;阅读器查询后台数据库,找到对应的(metaID,Key,ID)记录,然后将该Key值发送给标签;标签收到Key值后,计算Hash(Key)值,并与自身存储的metaID值比较,若Hash(Key)=metaID,标签将其ID发送给阅读器,这时标签进入已解锁状态,并为附近的阅读器开放所有的功能,如图2所示。
& & 方法的优点:解密单向Hash函数是较困难的,因此该方法可以阻止未授权的阅读器读取标签信息数据,在一定程度上为标签提供隐私保护;该方法只需在标签上实现一个Hash函数的计算,以及增加存储metaID值,因此在低成本的标签上容易实现。
& & 方法的缺陷:由于每次询问时标签回答的数据是特定的,因此其不能防止位置跟踪攻击;阅读器和标签问传输的数据未经加密,窃听者可以轻易地获得标签Key和ID值。
& & 2.2.2随机Hash锁(Random Hash Lock)
& & 为了解决Hash锁中位置跟踪的问题,将Hash锁方法加以改进,采用随机Hash锁方法。首先介绍字符串连接符号& ,如标签ID和随机数R的连接即表示为&IDIIR&。该方法中数据库存储各个标签的ID值,设为IDl、ID2.
& & 在该方法中,标签每次回答是随机的,因此可以防止依据特定输出而进行的位置跟踪攻击。但是,该方法也有一定的缺陷:(1)阅读器需要搜索所有标签ID,并为每一个标签计算Hash(IDkIIR),因此标签数目很多时,系统延时会很长,效率并不高;(2)随机Hash锁不具备前向安全性,若敌人获得了标签ID值,则可根据R值计算出Hash(IDIIR)值,因此可追踪到标签历史位置信息。
& & 2.2.3 Hash链(Hash Chain)[4]
& & NTT实验室提出了一个Hash链方法,其保证了前向安全性,工作机制如下:锁定标签:对于标签ID,阅读器随机选取一个数Sl发送给标签,并将(ID,S )存储到后台数据库中,标签存储接收
& & 到Sl后,进入锁定状态。
& & 解锁标签:在第i次事务交换中,阅读器向标签发出询问消息,标签回答ai=G(S。),并更新Si+l=H(s。),其中G和H为单向Hash函数,如图4所示。
& & 阅读器接收到ai后,搜索数据库中所有的(ID,S1)数据对,并为每个标签计算
& & ai =G(H (s1)),比较ai*是否等于ai,若相等,则返回相应ID。
& & 方法优点:具有不可分辨性,因为G是单向Hash函数,外人获得a。值不能推算出S。值,当外人观察标签输出时,G输出的是随机数,所以不能将a。和a。+l联系起来;具有前向安全性,因为H是单向Hash函数,即使窃取了Si+1值,也无法推算出S 值,所以无法获得标签历史活动信息。
& & 方法缺点:需要为每一个标签计算ai*:G(H (s1)),假设数据库中存储的标签个数为N,则需进行N个记录搜索,2N个Hash函数计算,N次比较,计算和比较量较大,不适合标签数目较多的情况。
& & 3 Key值更新随机Hash锁
& & 鉴于上述几种安全隐私保护方法存在的缺陷,并结合几种方法的思想,本文提出了一种&Key值更新随机Hash锁&方法,实现了安全高效的读取访问控制。
& & 3.1工作原理
& & 数据库记录主要包括4列:H(Key),ID,Key,Pointer,主键为H(Key)。其中ID为标签唯一标志号,Key是阅读器为每个标签选取的随机关键字,H(Key)是Key的单向Hash函数H计算值,Pointer是数据记录关联指针,主要用来保证数据的一致性[5]。
& & 下面详细阐述该方法的基本工作原理:
& & (1)锁定标签
& & 对于标签ID,首先阅读器随机选取一个数作为该标签的Key,将Key值发送给该标签,并建立标签在数据库中的初始记录(H(Key),ID,Key,0)),标签将接收到的Key值存储下来后,进入锁定状态。
& & (2)解锁标签
& & 1)数据库首先产生一个随机数R,传送给阅读器,然后阅读器将询问消息Query和R都发送给标签;
& & 2)标签根据接收到的R和自身Key值,计算H(Key)和H(KeylIR)的值,然后将(H(Key),H(KeylIR))数据对发送给阅读器,接着自行计算H(IDIIR)和Key =S(key),但此时Key值并不更新。
& & 3)阅读器查找数据库中的记录, 若找到记录i:
& & (H(Keyi),IDk,Key。,Pointeri),其中H(Key。):H(Key),则数据库计算H(KeyjIIR),并比较H(Key ItR)与接收到的H(KeyIIR)值是否相等。若不相等,则忽略此消息,表明标签是非法标签,在此阅读器完成对标签的合法性验证;若相等则继续下一步;
& & 4)数据库计算H(IDkIIR)的值,并将IDk和H(IDkIIR)的值都传送给阅读器。然后阅读器将H(IDkIIR)发送给标签;
& & 5)数据库计算Key*i=S(key。)和H(Key* )的值。若Pointeri:O, 则在数据库中添加新的记录J:(H(Key*i),IDbKey i,i),并将记录i修改成(H(Key。),IDbKeyij); 若Pointer !=O, 则找到第Pointer。条记录, 将其修改成(H(Key i),IDk,Key i,i);
& & 6)在标签接收到H(IDkIIR)后,比较其与标签在第2步中计算的H(IDIIR)是否相等,若相等,则将自身的Key值更新为Key ,标签进入解锁状态,对阅读器开放其所有功能;若不相等,表明阅读器是非法阅读器,标签保持沉默,在此标签完成对阅读器的验证。如图5所示。
& & 3.2数值实验
& & 设数据库初始时存储了两个标签,ID分别为1、2,随机选择的Key分别为5、12,数据库初始化如表1所示。
& & 设阅读器要询问ID为1的标签,首先阅读器向标签发送询问消息和随机数3,标签向阅读器回答数据(H(5),H(5II3)),接着自行计算自身的H(IDIIR)=H(1Il3)值和Key =s(5);阅读器根据H(5)查找后台数据库,找到记录1:(H(5),1,5,0),数据库计算H(KeyllR)=H(5lI3),与接收到的H(5113)相等,至此验证了标签是合法的;接着数据库计算H(IDIIR)=H(1 113),并将(1,H(1113))传送给阅读器,由此阅读器知道了该标签的ID为1,然后阅读器将H(1113)发送给标签; 数据库计算Key*I=s(5), 由于PointerI=0,数据库中新建一条记录3:(H(s(5)),1,s(5),1),并将记录1修改为(H(5),1,5,3)。标签接收到数据H(1 113)后,比较发现其等于之前计算的H(IDIIR),于是将自身Key值更新为s(5)。此时数据库中的数据记录如表2所示。
& & 下一次再与标签1通信时,数据库根据标签的H(Key)=H(s(5))查找到第3条记录,该记录的Pointer为1,则第2次更新Key值的记录将会覆盖第1条记录。
& & 当标签被询问过一次之后,数据库中始终保持了两条与该标签有关的数据记录,这主要
& & 是为了保证数据的一致性。假设在这次通信中阅读器发送的数据H(ll3)并未成功地被标签接收到,则标签1的Key值将不会更新,此时数据库的第3条记录是错误的。那么在下次与标签1的通信中,查找到的仍是记录1,数据库根据记录1的Pointer值为3,将修改第3条记录,如此就保证了数据的一致性。
& & 3.3性能分析与方法特点
& & (1)简单实用。将随机数产生器等复杂的计算移到了后台数据库中实现,降低了标签的复杂性,标签只需要实现两个Hash函数H和s,这在低成本的标签上较易实现。
& & (2)前向安全。因为标签的Key值在每次事务交换后被单向Hash函数s更新,外人即使获取了当前标签Key*值,也无法推算出之前的Key值,所以无法获得标签相关的历史活动信息。
& & (3)机器运算小,效率高。在每次询问过程中,设数据库中存储的标签个数为N,本方法中后台数据库需执行2N个记录搜索(因每个标签存在两条记录),进行3个Hash函数H(KeylIR)、S(Key)、H(IDIIR)计算和1次值比较,以及产生1个随机数R。相比于Hash链方法需计算2N个Hash函数、N个记录搜索和N个值比较,因为Hash函数的计算时延较长,资源消耗大,所以当N很大时,本方法系统的负载将要小得多,速度较快,延时较短,效率较高,但安全性更高。
& & (4)适应标签数目较多的情况。随着标签数目的增加,计算机搜索与计算所需要的时间缓慢增加,可适应标签数目较多的情况。
& & (5)实现了身份的双向验证。通过Hash(KeyllR)的计算比较,阅读器实现了对标签的验证;通过Hash(IDIIR)的计算比较,标签实现了对阅读器的验证。
& & (6)有效实现安全隐私保护。
& & 1)防非法读取:只有经过合法认证的阅读器才可读取标签的数据信息;
& & 2)防位置跟踪:由于随机数R和标签的Key值是更新变化的,因此每次回答的数据(H(Key),H(KeylIR))值也是不同的,可以防止外人根据特定输出而进行的跟踪定位;3)防窃听:传输的ID值和Key都经过了Hash函数加密,外人很难解密得出ID和Key的值,因此有效地防止了窃听;
& & 4)防伪装哄骗:由于外人无法获知Key值,因此无法模拟合法标签发送(H(Key),H(KeylIR))数据,故有效地防止了伪装哄骗攻击;
& & 5)防重放:每次产生的R值是随机的,外人即使窃听了合法阅读器前一次发送的H(ID IIR)数据,也无法再次模拟出H(ID IIR)值,有效地防止了重放攻击。
& & 4结束语
& & &Key值更新随机Hash锁&方法具有成本低、负载小、效率高、安全性好等特点,且能保证前向安全性,基本上弥补了目前安全保护方法安全性不够和效率低等缺陷,是一种较为实用的算法。但此方法还存在一些不足,如尚无法防止敌人根据流量分析(计算标签的个数)而进行的定位跟踪,同时安全性提高也增加了标签部分计算时延,这些尚需进一步研究改进。
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670& & &&)RFID射频识别技术与物联网
宏研电子-电子元器件技术文章
RFID射频识别技术与物联网
射频识别技术与物联网
射频识别技术是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。物联网是基于互联网技术,通过数据通信方式,构造一个多姿多彩的智能网络。它是通过标准的协议,依靠自动识别技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。
RFID站点提供最新、最全的RFID、电子标签、射频识别、读写器等RFID新闻、RFID方案应用、RFID技术文章、RFID资料下载等相关信息。RFID技术无线射频识别技术、RFID系统原理、RFID电子标签原理...提供RFID技术、无线射频识别技术、RFID系统设计、RFID产品设计、读写器设计、RFID中间件设计等技术原理文章。
RFID读卡器,自动识别,读写器,超高频读写器,非接触IC卡,一卡通,中距离读卡器,二代证阅读器,专业用RFID手持机,射频卡模块,远距离一体化读卡器,高频读卡器,远距离读卡器
RFID电子标签 手持机 手持读卡器相关:
RFID标签,RFID阅读器,RFID手持机,RFID动物标签
INPLAY,射频卡,一卡通,IC卡,FCOS,IC卡铣槽机,二代身份证识别仪,封装机,汽车无钥匙系统,非接触式IC卡,CPU卡
识别技术相关:
二维码,射频,条形码
RFID技术 RFID标签 RFID读写器 RFID电子标签 RFID芯片 RFID是什么 RFID读卡器
RFID卡 RFID系统 无线射频识别技术 射频识别系统构成图 射频技术 射频技术流程图 云计算与物联网的关系
射频识别技术:
射频识别(英文:Radio Frequency IDentification,缩写:RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。
1 基本介绍
2 技术发展
3 RFID标签的类别
4 使用指南
5 实用方案
6 RFID应用实例
7 RFID市场发展
1 基本介绍:
中文名称:射频识别
英文名称:radio freqRFID
定义:利用射频来阅读一个小器件(称作标记)上的信息的技术。
所属学科: 通信科技(一级学科) ;服务与应用(二级学科)
1.1 RFID技术简介:
  射频识别,(Radio Frequency IDentification,简称RFID)技术,是一种无线通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。
  无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;
也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之内都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之内,也可以
嵌入被追踪物体之内。
  许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物
的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以建筑进入锁住的部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。
  某些射频标签附在衣物、个人财物上,甚至于植入人体之内。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐隐私忧。
1.2 RFID的基本组成部分:
  标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象。
阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式rfid读写器(如:C5000W)或固定式读写器;
  天线(Antenna):在标签和读取器间传递射频信号。
1.3 RFID技术的工作原理:
  RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive
Tag,无源标签或被动标签),或者由标签
主动发送某一频率的信号(Active Tag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
  一套完整的RFID系统,
是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成,其工作原理是Reader发射一特定频率的无线电波能量给
Transponder,用以驱动Transponder电路将内部的数据送出,此时 Reader便依序接收解读数据,
送给应用程序做相应的处理。
  以RFID卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成:感应耦合(Inductive Coupling)
及后向散射耦合(BackscatterCoupling)两种。一般低频的RFID大都采用第一种
式,而较高频大多采用第二种方式。
  阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信
方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是RFID系统的
信息载体,目前应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。
1.4 零售商推崇RFID的原因:
  据Sanford C. Bernstein公司的零售业分析师估计,通过采用RFID,沃尔玛每年可以节省83.5亿美元,其中大部分是因为不需要人工查看进货的条码而节省的劳动力成本。尽管另外一些分析师认为
80亿美元这个数字过于乐观,但毫无疑问,RFID有助于解决零售业两个最大的难题:商品断货和损耗(因盗窃和供应链被搅乱而损失的产品),而现在单是盗窃一项,沃尔玛一年的损失就差不多有20亿
美元,如果一家合法企业的营业额能达到这个数字,就可以在美国1000家最大企业的排行榜中名列第694位。研究机构估计,这种RFID技术能够帮助把失窃和存货水平降低25%。
1.5 RFID技术的典型应用:
  物流和供应管理
  生产制造和装配
  航空行李处理
  邮件/快运包裹处理
  文档追踪/图书馆管理
  动物身份标识
  运动计时
  门禁控制/电子门票
  道路自动收费
  城市一卡通的应用
  高校手机一卡通的应用。
  仓储中塑料托盘、周转筐中的应用
1.6 RFID读写设备:
  只有当有读写设备时,RFID才能发挥其作用。RFID读写设备有RFID读卡器,RFID读写模块等。这些设备可以将RFID的数据读取或写入,读卡器连接的识别系统有密钥芯片,能做到很好的加密。
1.7 射频识别技术:
  射频识别技术(Radio Frequency Identification,缩写RFID),是20世纪80年代发展起来的一种新兴自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无
接触信息传递并通过所传递的信息达到识别目的的技术
1.8 从信息传递的原理来说:
  射频识别技术在低频段基于变压器耦合模型(初级与次级之间的能量传递及信号传递),在高频段基于雷达探测目标的空间耦合模型(雷达发射电磁波信号碰到目标后携带目标信息返回雷达接收机
)。1948年哈里斯托克曼发表的&利用反射功率的通信&奠定了射频识别技术的理论基础。
<font color="# 技术发展:
2.1 发展进程:
  年:雷达的改进和应用催生了射频识别技术,1948年奠定了射频识别技术的理论基础。
  年:早期射频识别技术的探索阶段,主要处于实验室实验研究。
  年:射频识别技术的理论得到了发展,开始了一些应用尝试。
  年:射频识别技术与产品研发处于一个大发展时期,各种射频识别技术测试得到加速。出现了一些最早的射频识别应用。
  年:射频识别技术及产品进入商业应用阶段,各种规模应用开始出现。
  年:射频识别技术标准化问题日趋得到重视,射频识别产品得到广泛采用,射频识别产品逐渐成为人们生活中的一部分。
  2000年后:标准化问题日趋为人们所重视,射频识别产品种类更加丰富,有源电子标签、无源电子标签及半无源电子标签均得到发展,电子标签成本不断降低,规模应用行业扩大。
2.2 现在的射频识别技术:
  射频识别技术的理论得到丰富和完善。单芯片电子标签、多电子标签识读、无线可读可写、无源电子标签的远距离识别、适应高速移动物体的射频识别技术与产品正在成为现实并走向应用。
3 RFID标签的类别:
  RFIDbackscatter.
  RFID标签分为被动,半被动(也称作半主动),主动三类。
3.1 被动式:
  被动式标签没有内部供电电源。其内部集成电路通过接收到的电磁波进行驱动,这些电磁波是由RFID读取器发出的。当标签接收到足够强度的讯号时,可以向读取器发出数据。这些数据不仅包括ID
号(全球唯一标示ID),还可以包括预先存在于标签内EEPROM中的数据。
  由于被动式标签具有价格低廉,体积小巧,无需电源的优点。目前市场的RFID标签主要是被动式的。
3.2 半主动式:
  一般而言,被动式标签的天线有两个任务,第一:接收读取器所发出的电磁波,藉以驱动标签IC;第二:标签回传信号时,需要靠天线的阻抗作切换,才能产生0与1的变化。问题是,想要有最好的
回传效率的话,天线阻抗必须设计在“开路与短路”,这样又会使信号完全反射,无法被标签IC接收,半主动式标签就是为了解决这样的问题。半主动式类似于被动式,不过它多了一个小型电池,电力
恰好可以驱动标签IC,使得IC处于工作的状态。这样的好处在于,天线可以不用管接收电磁波的任务,充分作为回传信号之用。比起被动式,半主动式有更快的反应速度,更好的效率。
3.3 主动式:
与被动式和半被动式不同的是,主动式标签本身具有内部电源供应器,用以供应内部IC所需电源以产生对外的讯号。一般来说,主动式标签拥有较长的读取距离和较大的记忆体容量可以用来储存读
取器所传送来的一些附加讯息。
  射频识别技术包括了一整套信息技术基础设施,包括:
  射频识别标签,又称射频标签、电子标签,主要由存有识别代码的大规模集成线路芯片和收发天线构成,目前主要为无源式,使用时的电能取自天线接收到的无线电波能量;射频识别读写设备以及
与相应的信息服务系统,如进存销系统的联网等。
  将射频识别技术与条码(Barcode)技术相互比较,射频类别拥有许多优点,如:
  可容纳较多容量。通讯距离长。难以复制。对环境变化有较高的忍受能力。可同时读取多个标签。
相对地有缺点,就是建置成本较高。不过目前透过该技术的大量使用,生产成本就可大幅降低。
4 使用指南:
  不同频段的RFID产品会有不同的特性,下面详细介绍无源的感应器在不同工作频率产品的特性以及主要的应用。
  目前定义RFID产品的工作频率有低频、高频和超高频的频率范围内的符合不同标准的不同的产品,而且不同频段的RFID产品会有不同的特性。其中感应器有无源和有源两种方式,下面详细介绍无源
的感应器在不同工作频率产品的特性以及主要的应用。
4.1 低频:(从125KHz到135KHz)
  其实RFID技术首先在低频得到广泛的应用和推广。该频率主要是通过电感耦合的方式进行工作,
也就是在读写器线圈和感应器线圈间存在着变压器耦合作用。通过读写器交变场的作用在感应器天线
中感应的电压被整流,可作供电电压使用. 磁场区域能够很好的被定义,但是场强下降的太快。
  特性:
  1.工作在低频的感应器的一般工作频率从120KHz到134KHz,TI的工作频率为134.2KHz。该频段的波长大约为2500m.
  2.除了金属材料影响外,一般低频能够穿过任意材料的物品而不降低它的读取距离。
  3.工作在低频的读写器在全球没有任何特殊的许可限制。
  4.低频产品有不同的封装形式。好的封装形式就是价格太贵,但是有10年以上的使用寿命。
  5.虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
  6.相对于其他频段的RFID产品,该频段数据传输速率比较慢。
  7.感应器的价格相对与其他频段来说要贵。
  主要应用:
  1.畜牧业的管理系统。
  2.汽车防盗和无钥匙开门系统的应用。
  3.马拉松赛跑系统的应用。
  4.自动停车场收费和车辆管理系统。
  5.自动加油系统的应用。
  6.酒店门锁系统的应用。
  7.门禁和安全管理系统。
  符合国际标准的:
  a) ISO 11784 RFID畜牧业的应用-编码结构。
  b) ISO 11785 RFID畜牧业的应用-技术理论。
  c) ISO 14223-1 RFID畜牧业的应用-空气接口。
  d) ISO 14223-2 RFID畜牧业的应用-协议定义。
  e) ISO 18000-2 定义低频的物理层、防冲撞和通讯协议。
  f) DIN 30745 主要是欧洲对垃圾管理应用定义的标准。
4.2 高频:(工作频率为13.56MHz)
  在该频率的感应器不再需要线圈进行绕制,可以通过腐蚀或者印刷的方式制作天线。感应器一般通过负载调制的方式进行工作。也就是通过感应器上的负载电阻的接通和断开促使读写器天线上的电
压发生变化,实现用远距离感应器对天线电压进行振幅调制。如果人们通过数据控制负载电压的接通和断开,那么这些数据就能够从感应器传输到读写器。
  值得关注的是,在13.56MHz频段中主要有ISO14443和ISO15693两个标准来组成,ISO14443俗称现在的Mifare
1系列产品,识别距离近但价格低保密性好,常作为公交卡、门禁卡来使用。ISO15693的
最大优点在于他的识别效率,通过较大功率的阅读器可将识别距离扩展至1.5米以上,由于波长的穿透性好在处理密集标签时有优于超高频的读取效果。
  特性:
  1.工作频率为13.56MHz,该频率的波长大概为22m。
  2.除了金属材料外,该频率的波长可以穿过大多数的材料,但是往往会降低读取距离。标签需要离开金属4mm以上距离,其抗金属效果在几个频段中较为优良。
  3.该频段在全球都得到认可并没有特殊的限制。
  4.感应器一般以电子标签的形式。
  5.虽然该频率的磁场区域下降很快,但是能够产生相对均匀的读写区域。
  6. 该系统具有防冲撞特性,可以同时读取多个电子标签。
  7.可以把某些数据信息写入标签中。
  8.数据传输速率比低频要快,价格不是很贵。
  主要应用:
  1.图书管理系统的应用
  2.瓦斯钢瓶的管理应用
  3.服装生产线和物流系统的管理和应用
  4.三表预收费系统
  5.酒店门锁的管理和应用
  6.大型会议人员通道系统
  7.固定资产的管理系统
  8.医药物流系统的管理和应用
  9.智能货架的管理
  10.珠宝盘点管理。
  符合的国际标准:
  a) ISO/IEC 14443 近耦合IC卡,最大的读取距离为10cm.
  b) ISO/IEC 15693 疏耦合IC卡,最大的读取距离为1m.
  c) ISO/IEC 18000-3 该标准定义了13.56MHz系统的物理层,防冲撞算法和通讯协议。
  d) 13.56MHz ISM Band Class 1 定义13.56MHz符合EPC的接口定义。
4.3 超高频:(工作频率为860MHz到960MHz之间)
  超高频系统通过电场来传输能量。电场的能量下降的不是很快,但是读取的区域不是很好进行定义。该频段读取距离比较远,无源可达10m左右。主要是通过电容耦合的方式进行实现。
  特性:
  1.在该频段,全球的定义不是很相同-欧洲和部分亚洲定义的频率为868MHz,北美定义的频段为902到905MHz之间,在日本建议的频段为950到956之间。该频段的波长大概为30cm左右。
  2.目前,该频段功率输出目前没有统一的定义(美国定义为4W,欧洲定义为500mW,可能欧洲限制会上升到2W EIRP。
  3.超高频频段的电波不能通过许多材料,特别是金属,液体,灰尘,雾等悬浮颗粒物质,可以说环境对超高频段的影响是很大的。
  4.电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
  5.该频段有好的读取距离,但是对读取区域很难进行定义。
  6.有很高的数据传输速率,在很短的时间可以读取大量的电子标签。
  主要应用:
  1.供应链上的管理和应用
  2.生产线自动化的管理和应用
  3.航空包裹的管理和应用
  4.集装箱的管理和应用
  5.铁路包裹的管理和应用
  6.后勤管理系统的应用。
  符合的国际标准:
  a) ISO/IEC 18000-6 定义了超高频的物理层和通讯协议;空气接口定义了Type A和Type
B两部分;支持可读和可写操作。
  b) EPCglobal 定义了电子物品编码的结构和甚高频的空气接口以及通讯的协议。例如:Class 0,Class 1,UHF
  c) Ubiquitous ID 日本的组织,定义了UID编码结构和通信管理协议。
  在将来,超高频的产品会得到大量的应用。例如WalMart,Tesco,美国国防部和麦德龙超市都会在它们的供应链上应用RFID技术。
  有源RFID技术(2.45GHz、5.8G)
  有源RFID具备低发射功率、通信距离长、传输数据量大,可靠性高和兼容性好等特点,与无源RFID相比,在技术上的优势非常明显。被广泛地应用到公路收费、港口货运管理等应用中。
  射频识别作为一种新兴的自动识别技术,在中国拥有巨大的发展潜力。
  射频识别技术(RFID,Radio Frequency
Identification)实际上是自动识别技术(AEI,Automatic Equipment
Identification)在无线电技术方面的具体应用与发展。该项技术的基本思想是,通过采用一些先进的技术手段,实现人们对各类物体或设备(人员、物品)
在不同状态(移动、静止或恶劣环境)下的自动识别和管理。
4.4 与管理软件结合使用:
  MES精益制造管理系统又称APS+MES系统(高级排产计划系统+制造执行系统),是根据不同行业的制造流程,可选择性地集合系统管理软件和人机界面设备(PLC触摸屏)、LED生产看板、LCD看板、
PDA智能手持终端、工业平板电脑、条码采集器、传感器、I/O、DCS、RFID、工业AP、WIFI等多类硬件的综合智能一体化系统。它由一组共享数据的程序,通过布置在生产现场的专用设备,并通过嵌入式
软件对原材料上线到成品入库的整个生产过程实时采集数据、监控、控制和智能分析处理。它能控制物料、仓库、设备、人员、品质、工艺、异常、流程指令和其他设施等工厂资源以提高生产效率。应
用范围:制造型企业。
  使用RFID技术后指标可达:生产周期缩短35%;数据输入时间缩短36%;在制品减少32%;文书工作减少90%;交货期缩短22%;不合格产品降低22%;文书丢失减少95%;信息的反馈效率提升3860倍。
5 实用方案:
5.1 用于病患监测的双接口无源RFID系统设计
  病患监测设备通常用于测量病患的生命迹象,例如,血压、心率等参数,管理这些重要数据的要求远远超出了简单的库存控制范围,需要设备能够提供设备检查、校准和自检结果,并具有安全升级
功能,同时最大限度降低设备故障停机时间。维修人员经常把记录维修数据的标签粘贴在设备上,由于需要记录大量数据,过一段时间后逐渐损坏,标签贴纸不再是一个合理的选择。与静态的标签贴纸
不同,动态的双接口RFIDEEPROM电子标签解决方案则能够记录测量参数,以备日后读取,还能把新数据输入系统。
5.2 基于RFID的物联网智能公交系统应用方案
  基于物联网技术的公交停车场站安全监管系统,主要由车辆出入口管理系统、场站智能视频监控系统两部分组成,利用先进的“物物相联技术”,将用户端延伸和扩展到公交车辆、停产场站中的任
何物品间进行数据交换和通信,全面立体的解决公交行业监管问题。
5.3 基于RFID技术的小区安防系统设计解决方案
  在小区的各个通道和人员可能经过的通道中安装若干个阅读器,并且将它们通过通信线路与地面监控中心的计算机进行数据交换。同时在每个进入小区的人员车辆上放置安置有RFID电子标签身份卡
,当人员车辆进入小区,只要通过或接近放置在通道内的任何一个阅读器,阅读器即会感应到信号同时立即上传到监控中心的计算机上,计算机就可判断出具体信息(如:是谁,在哪个位置,具体时间
),管理者也可以根据大屏幕上或电脑上的分布示意图点击小区内的任一位置,计算机即会把这一区域的人员情况统计并显示出来。同时,一旦小区内发生事故(如:火灾、抢劫等),可根据电脑中的
人员定位分布信息马上查出事故地点周围的人员车辆情况,然后可再用探测器在事故处进一步确定人员准确位置,以便帮助公安部门准确快速的方式营救出遇险人员和破案。
6 RFID应用实例:
6.1 食品溯源
  采用rfid技术进行食品药品的溯源在一些城市已经开始试点,包括宁波,广州,上海等地,食品药品的溯源主要解决来食品来路的跟踪问题,如果发现了有问题的产品,可以简单的追溯,直到找到
问题的根源
6.2 RFID应用客户背景
  总部设于波士顿的吉列(Gillette)公司成立于1901年,目前有雇员3万人,主要生产剃须产品、电池和口腔清洁卫生产品。吉列在美国市场占有率高达90%,全球市场的份额达到70%以上。据估计,
如今在北美每3个男性中就有1个使用吉列速锋Ⅲ剃须刀。
6.3 零售挑战
  吉列公司和各零售公司都建有网络机制,可以实时了解自己产品的销售和库存情况。但吉列做了现场调查后发现,在更多时候,新品销售、促销结果的不好,是由于零售店没有将新品上架、没有及时补货等造成的,而这些情况,不是现有网络机制能解决的。
6.4 博物馆利用RFID技术
  (美国)加州技术创新博物馆正使用RFID技术来拓展和增强参观者的参观体验。他们给前来参观的访问者每人一个RFID标签,使其能够在今后其个人网页上浏览此项展会的相关信息;这种标签还可用来确定博物馆的参观者所访问的目录列表中的语言类别。
  或许在未来的某天,美国的技术创新博物馆将会开发出一种展示品,用来探测RFID技术对于整个世界的影响。但是现在,位于加州的该博物馆正使用RFID技术来拓展和增强参观者的参观体验。该博物馆成立于1990年。自成立以来,就成为了硅谷有名又受欢迎的参观地,并吸引了很多家庭和科技爱好者前来参观访问。每年大约能接待40万参观者。从参观者所做出的积极良好的反应看来,使用RFID标签是成功的。
  博物馆对于那些对人类科学、生命科学及交流等做出贡献的科学技术将会进行永久性的展列,并将对硅谷的革新者等所做出的业绩进行详细的展示。一个名为&Genetics:
Technology With a Twist& 的生命科学展会于2004年3月举行,在此会上,该博物馆展示了使用RFID标签的方案,即给前来参观的访问者每人一个RFID标签,使其能够在今后其个人网页上浏览采集此项展会的相关信息。这种标签还可用来确定博物馆的参观者所访问的目录列表中的语言类别。
  由于其他参观者的影响以及时间限制等问题,参观者并不能够像其所期望的能够很好的了解和学习较多的与展示相关的知识。事实上,美国明尼苏达州的科技博物馆曾对此进行调查并指出平均每个参观者参观科技博物馆中的每个陈列展品所用的时间约为30秒钟。通过使用RFID标签来自动的创造出个人化的信息网页,参观者便可以选择在其方便的时候在网页上查询某个展示议题的相关资料,或者
找寻博物馆中的相关资料文献。
  在参观结束之后,参观者还可以在学校或家中通过网络访问网站并键入其标签上一个16位长的ID号码并登陆。这样他们就可以访问其独有的个人网页了。很多家美国及其它国家的博物馆都打算在卡
片或徽章的同一端上使用RFID技术。至少丹麦的一家自然历史博物馆以PDA的形式将识读器交到前来参观者手中,并将标签与展示内容结合起来。但是据技术创新博物馆的副馆长Greg
Brown所知,其博物
馆是第一家使用RFID技术腕圈的博物馆。
  博物馆认为这是参观了解博物馆的一种最好的方法,因为这样参观者能够实现与展示会之间的互动。这种RFID腕圈很像一个带有饰物的手链。它是由一个三英寸长一英寸宽的黑色橡皮圈将该博物馆
的标签固定住的。每一个RFID标签都有一个特有的16位长的数字密码粘贴在饰物上面。数字密码被刻在一个薄膜状的蓝绿色铝制金属薄片天线上,天线中央是一个十分显眼的数字配线架――日立公司推
出的μ-Chip。这种仅0.4平方毫米大的μ-chip是目前来说最小的用于标识日期的RFID芯片,工作频率为2.45GHz,其最适合用于像技术创新博物馆的应用程序之类的闭环系统。
  对于用户来说,他们根本不需要提供任何的邮箱地址或其它类似的信息,他们只需要提供一个16位长的数字密码就可以直接登陆到他们的个人网页。因此,据
Brown说,使用这种标签并没有引发破坏隐私等问题。实际上,许多前来参观的高新技术的爱好者都对此做出的良好的反应。Brown又接着说到:“这种技术与前来参观者的个人品格简直是完美结合。人们确实很想要更多的了解它到底是怎样
工作的。”
  博物馆当下已拥有约40个此种标签站点且数目一直在增加中。而在每一个站点都设有向参观者介绍怎样使用该种标签的招牌和标语。这样就可以使每一个标签都进入RFID识读器天线的识读区域内。但有时候,这样的操作说明会显示在一台手动监测器上面。当参观者看到显示灯闪了一下或者听到一声操作音后,便知道他们的标签已经被识读过了。
6.5 被上海世博会门票采用
  近年来,在上海举行的会展数量以每年20%的速度递增。上海市政府一直在积极探索如何应用新技术提升组会能力,更好地展示上海城市形象。RFID在大型会展中应用已经得到验证,2005年爱知世博会的门票系统就采用了RFID技术,做到了大批参观者的快速入场。2006年世界杯主办方也采用了嵌入RFID芯片的门票,起到了防伪的作用。这引起了大型会展的主办方的关注。在2008年的北京奥
运会上,RFID技术已得到了广泛应用。
  2010年世博会在上海举办,对主办者、参展者、参观者、志愿者等各类人群有大量的信息服务需求,包括人流疏导、交通管理、信息查询等,RFID系统正是满足这些需求的有效手段之一。世博会的主办者关心门票的防伪。参展者比较关心究竟有哪些参观者参观过自己的展台,关心内容和产品是什么以及参观者的个人信息。参观者想迅速获得自己所要的信息,找到所关心的展示内容。
  而志愿者需要了解全局,去帮助需要帮助的人。这些需求通过RFID技术能够轻而易举的实现。参观者凭借嵌入RFID标签的门票入场,并且随身携带。每个展台附近都部署有RFID读取器,这样对参展者来说,参观者在展会中走过哪些地方,在哪里驻足时间较长,参观者的基本信息是什么等就了然于胸了,当参观者走近时,可以更精确地提供服务。同时,主办者可以在会展上部署带有RFID读取器的多媒体查询终端,参观者可以通过终端知道自己当前的位置及所在展区的信息,
还能通过查询终端追踪到走失的同伴信息。
6.6 监控1340余枚放射源
  从成都市核与辐射监管人员培训会上获悉,为了进一步建立健全成都核与辐射的监管体系,市环保局出台了《成都市核与辐射安全管理职责及工作程序》(征求意见稿),这也标志着成都核与辐射的监管体系全面建立起来。据了解,目前,全市有在用放射源数量1340余枚,约占全省的一半,目前都处于安全可控状态,而为了进一步保障核与辐射环境安全,下一步成都还将启动放射源监控系统建设,给这些放射源贴上“电子标签”实现24小时监控。
  给放射源贴上“电子标签”今后24小时全天候监控
  “成都有在用放射源数量1340余枚,约占全省的一半。”市环保局相关负责人介绍说,成都核技术利用单位点位多、涉及面广、门类齐全,其在用放射源数量也是在全省最多的,占到一半左右,因
此对核与辐射的监管更是显得尤为重要。
  “特别是‘3?11日本核危机’以来,市民对于核与辐射的关注空前。”负责人告诉记者,市环保局花7个月的时间做准备来研究和建立监管核辐射制度,确保成都核与辐射安全的万无一失。据了解,今年以来,市环保局对全市范围内的在用放射源展开了调研,摸清了全市核技术应用单位的底数,严肃查处违法购买、使用放射源的企业,消除安全隐患。
  “目前,成都全市放射源处于安全可控状态。”负责人告诉记者,为了进一步建立健全核与辐射的监管体系,解决核与辐射安全管理职责不清、管理粗放的问题,日前,市环保局出台了《成都市核与辐射安全管理职责及工作程序》(征求意见稿),这标志着成都核与辐射的监管体系已全面建立起来。
  “尽管目前摸清了家底,也建立了相应的监管机制,但是这也仅仅是眼睛看,没有做到全时段的监控。”负责人坦言,为了实现对这些放射源的全方位监管,下一步,我们将采用物联网技术,给每个放射源都贴上“电子标签”,对它们实行24小时监管。“这些放射源野外偷运或者存在安全隐患,通过后方平台监控,都能够一清二楚掌控。”据负责人透露,成都将研究启动放射源监控系统建设,用现代科技手段力争实现对放射源的全时段、全方位监控,并首先在武侯区试点。
&&& 电磁辐射安全值低于国家标准成都辐射监管要求更高
  “3?11日本核危机”爆发以来,公众对于核与辐射安全监控日益关注,但许多公众也由于缺乏相关方面的知识,盲目害怕,比如对于移动通信基站、电力变压器等,就存在着一定的误区。省环保厅核辐射处杨有仪告诉记者,辐射分两种,一是电离辐射,另一种是电磁辐射,而日常生活中我们接触更多的是第二种电磁辐射,电磁辐射包括电磁波辐射、高压线、广播电视塔、移动基站、微波雷
  “成都的电磁辐射标准高于国家标准,其安全值设置比国家低5倍。”杨有仪告诉记者,像通信基站、广播电视塔这类电磁辐射,主要是射频电磁辐射,而对于其电磁辐射的安全值,国家有一个统一的标准。但在实际使用中,我们为了更大程度上保障人民群众的身体健康,成都所有射频电磁辐射的标准值,都是按照国家标准值乘以五分之一来设定的。“我们把这个衡量的标准值缩小,就是要最大限度地保障人民群众的安全。”
  而像变电站这种输变电设备的电磁环境影响,杨有仪告诉记者,一般来说110千伏的输变电线路,如果线高在6.5米以上,都可以满足标准要求,是安全的,对于220千伏的,在线下垂直两米以外是安全的。
  另外,对于许多市民担心的,通信基站或变电站在修建过程中,辐射是否超标的问题,杨有仪告诉记者,其实在这些基站和变电站新建、改建扩建时,我们环保部门都会先进行环境影响评价,同时,会有严格的审批和建成后的测试。而对于测试标准,实际上也是有着科学严谨的规定。“我们一般会在满功率的时候来测试它的辐射值,如果验收通过,才能投入使用。但是其实在具体的使用中,是不会达到满功率的。”杨有仪说道。
7 RFID市场发展
  一、超高频技术不完善,制约应用发展 
  目前,在无源超高频电子标签技术上还存在着系统集成稳定性差、超高频标签性能本身有一些物理缺陷等许多技术方面不完善的问题。
  在系统集成方面,现阶段中国十分缺乏专业、高水平的超高频系统集成公司,整体而言无源超高频电子标签应用解决方案还不够成熟。这种现状便造成应用系统的稳定性不高,常会出现“大毛病没有,小毛病不断”的现象,进而影响了终端用户采用超高频应用方案的信心。
  从超高频标签产品本身而言,存在着标签读写性能稳定性不高、在复杂环境下漏读或读取准确率低等诸多问题。
  二、超高频标准不统一,制约产业发展
  目前,无源超高频电子标签在国内尚无形成统一的标准,国际上制定的ISO18000-6C/EPCClass1Gen2协议,由于涉及多项专利,所以很难把它作为国家标准来颁布和实施,国内超高频市场上相关的标
准及检测体系实际上是处于缺位状态。在没有统一标准的环境下,十分制约产业和应用的发展。
  三、超高频成本瓶颈,制约市场发展
  尽管近两年来,无源超高频电子标签价格下降很快,但是从RFID芯片以及包含读写器、电子标签、中间件、系统维护等整体成本而言,超高频RFID系统价格依然偏高,而项目成本是应用超高频RFID
系统最终用户权衡项目投资收益的重要指标。所以,超高频系统的成本瓶颈,也是制约中国超高频市场发展的重要因素。
  2010年以来,由于经济形势的好转和物联网产业发展等利好因素推动,全球RFID市场也持续升温,并呈现持续上升趋势,预计2012年,市场规模将达到200多亿美元。与此同时,RFID的应用领域越来越多,人们对RFID产业发展的期待也越来越高。目前RFID技术正处于迅速成熟的时期,许多国家都将RFID作为一项重要产业予以积极推动。
  总之,目前中国无源超高频市场还处于发展的初期,核心技术急需突破,商业模式有待创新和完善,产业链需要进一步发展和壮大,只有核心问题得到有效解决,才能够真正迎来RFID无源超高频市
  RFID的应用――发现服务
  发现服务主要是指将RFID信息存储到一个轻量级的数据库中,便于用户使用RFID编号进行查询,用于物联网的形成。
电子技术热榜与新兴技术学科参考
技术书籍热榜:
《物联网关键技术》,《物联网技术概论》,《智慧城市》,《扩频通信》,《软件工程》,《电子商务》,《传感器》,《机械电子工程》,《物联网100问》,《信息安全》,《无线传感器网络技术》,《物流工程》,《传感器原理及应用》,《光纤通信》,《大数据时代》
车联网,云计算,三网融合,云,4G
学科名热榜:
电子信息工程,通信工程,计算机科学与技术,自动化,电子信息科学与技术,电子科学与技术,信息与计算科学,机械设计制造及其自动化,物流管理,信息管理与信息系统,环境工程,测控技术与仪器,食品科学与工程,工业设计,工程管理,生物工程,轻化工程
电子技术热榜:
RFID射频识别,超视距雷达,电子标签,超短波通信,云技术
||||||||||||
宏研电子 版权所有
Copyright& &&&
天猫店:  京东店:  阿里巴巴:(诚信通)
桂林公司:桂林市南城电器城2楼19号&&& 邮编:541002&&&
电话:&&& &&& 传真:
上海办事处:上海市黄浦区福建中路225号中悦大楼708室&&& 邮编:200001&&&
电话:021-&&& 传真:021-
微信号:hy3836 新浪微博:@宏研电子微博 咨询QQ: E-Mail:

我要回帖

更多关于 rfid加密 的文章

 

随机推荐