完全充血长度9cm多,但是ipv6头部长度有乒乓球那么大,戴着55mm套,能不能搞定shao.fu?速度。

var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
$(".navBg").click(function()
var arrow = $(this).find("span.arrow");
if(arrow.hasClass("up"))
arrow.removeClass("up");
arrow.addClass("down");
else if(arrow.hasClass("down"))
arrow.removeClass("down");
arrow.addClass("up");
$(this).parent().find(".menus").toggle();
var convergedHTML="none";
var url="'"+document.location+"'";
var isKOS="false";
var isConvergeFieldStr="false";
var index=url.indexOf("simple-search");
var filed=$("#tfield1").attr("value");
if(isKOS=="true" && isConvergeFieldStr=="true" && (index!=-1) && (convergedHTML=="" || convergedHTML.indexOf("无")!=-1))
var kosAreaHTML="";
$("#list_2").html("DDC Clustering"+kosAreaHTML);
var covergeURL=document.location+"&converge=true"+"&rnd="+new Date().getTime();
var divConvergeHeightOld=$("#list_2").height();
$.get(covergeURL,
function(data){
if(data.substring(0,2)=="ok")
data=data.substring(3);
$("#list_2").html(data+kosAreaHTML);
$("#list_2").html("无"+kosAreaHTML);
/*if(data.indexOf("无")!=-1)
$("#list_2").height(20);
$("#list_2").width("auto");
var divConvergeHeightNew=$("#list_2").height();
var heightDiff=200-divConvergeHeightO
if(divConvergeHeightNew>=200)
$("#tdConverge").height(200);
$("#LeftPane").height($("#LeftPane").height()+heightDiff);
$("#RightPane").height($("#LeftPane").height());
$("#MySplitter").height($("#LeftPane").height());
$(".vsplitbar").height($("#LeftPane").height());
document.getElementById("LeftPane").style.height=$("#LeftPane").height();
document.getElementById("RightPane").style.height=$("#LeftPane").height();
document.getElementById("MySplitter").style.height=$("#LeftPane").height();
alert(document.getElementById("MySplitter").style.height);
$(".converge").css("cursor","pointer");
$(".converge").css("color","#1F5B97");
$(".converge").mouseover(function(){
$(this).addClass("over");
}).mouseout(function(){
$(this).removeClass("over");})
$(".converge").click(function(){
//$("#tabNav").css("display","none");
$("#tabSearchResult").css("display","none");
$("#convergeResult").html("");
var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
题名: Trapped Abstraction in the O(D-1) + CHD3 -& OH + CD3 Reaction
作者: Yang, J
Zhang, Dong H.;
Yang, Xueming
刊名: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷号: 5, 期号:18, 页码:英文摘要: Despite significant progress made in past decades, it is still challenging to elucidate dynamics mechanisms for polyatomic reactions, in particular, involving complex formation. The reaction of O(D-1) with methane has long been regarded as a prototypical polyatomic system of direct insertion reaction in which the O(D-1) atom can insert into the C-H bond of methane to form a "hot" methanol intermediate before decomposition. Here, we report a combined theoretical and experimental study on the O(D-1) + CHD3 reaction, on which good agreement between theory and experiment is achieved. Our study revealed that this complex-forming reaction actually proceeds via a trapped abstraction mechanism, rather than an insertion mechanism as has long been thought. We anticipate that this reaction mechanism should also be responsible for the reaction of O(D-1) with ethane and propane, as well as many other chemical reactions with deep wells in the interaction region.
WOS标题词: Science & Technology
Physical Sciences
Technology
类目[WOS]: Chemistry, Physical
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Physics, Atomic, Molecular & Chemical
研究领域[WOS]: Chemistry
Science & Technology - Other Topics
Materials Science
关键词[WOS]: POTENTIAL-ENERGY SURFACES
FORMING BIMOLECULAR REACTIONS
CROSSED MOLECULAR-BEAM
INSERTION REACTION
REACTION DYNAMICS
COLLISION ENERGY
4-ATOM REACTION
CLO+H REACTIONS
CHLORINE ATOM
收录类别: SCI
语种: 英语
WOS记录号: WOS:005
Citation statistics:
内容类型: 期刊论文
URI标识: []&&
Appears in Collections:
作者单位: Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
Google Scholar
CSDL cross search
Related Copyright Policies
Social Bookmarking
Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.&油液在线监测系统中的磨粒识别--《光学精密工程》2009年03期
油液在线监测系统中的磨粒识别
【摘要】:针对机械设备磨损状态监测要求,构建了基于显微图像分析的油液在线监测系统。根据系统的光路特点,对磨粒图像进行了基于彩色特征的转换,并通过与背景图像的差值处理来快速提取磨粒目标。基于最小二乘支持向量机设计了两类磨粒分类器,并利用粒子群优化算法对最小二乘支持向量机模型中的参数进行了优化选取。在此基础上,根据磨粒识别体系,设计了磨粒综合分类器。最后,利用铁谱分析技术对系统性能和识别效果进行了检验,结果表明,系统的识别精度达到95%以上,满足磨粒在线监测要求。
【作者单位】:
【基金】:
【分类号】:TP274.4
欢迎:、、)
支持CAJ、PDF文件格式,仅支持PDF格式
【参考文献】
中国期刊全文数据库
赵吉文;刘永斌;苏亚辉;孔凡让;张平;;[J];光学精密工程;2006年03期
赵吉文;刘永斌;孔凡让;张平;孙丙宇;;[J];光学精密工程;2006年05期
崔长彩;黄富贵;张认成;李兵;;[J];光学精密工程;2006年02期
吴振锋,左洪福,杨忠;[J];交通运输工程学报;2001年01期
【共引文献】
中国期刊全文数据库
马怀祥,徐明新;[J];车用发动机;1999年02期
马怀祥,淮公锁,吕宝华;[J];柴油机;2000年03期
赵连利,罗富生,姚贵友;[J];东北大学学报(自然科学版);1997年05期
黄鹏;贾民平;钟秉林;胡献国;;[J];东南大学学报(自然科学版);2006年03期
王强,龚烈航;[J];工程机械;1996年01期
潘书业;[J];工程机械;2001年05期
陈步童;[J];工程机械;2004年04期
赵吉文;刘永斌;孔凡让;张平;孙丙宇;;[J];光学精密工程;2006年05期
姚剑敏;许廷发;倪国强;;[J];光学精密工程;2007年03期
贺秋伟;王龙山;刘庆民;李国发;;[J];光学精密工程;2007年04期
中国博士学位论文全文数据库
于辉;[D];南京航空航天大学;2002年
殷勇辉;[D];武汉理工大学;2002年
袁成清;[D];武汉理工大学;2005年
赵春华;[D];武汉理工大学;2005年
包哲静;[D];浙江大学;2007年
王德吉;[D];中国科学技术大学;2007年
李川;[D];重庆大学;2007年
谭冬梅;[D];武汉理工大学;2007年
中国硕士学位论文全文数据库
黄鹏;[D];合肥工业大学;2005年
范盛荣;[D];武汉理工大学;2004年
陈叶明;[D];南京航空航天大学;2003年
张波;[D];南京航空航天大学;2004年
佟浩;[D];燕山大学;2004年
高慧良;[D];武汉理工大学;2004年
王巧云;[D];武汉科技大学;2004年
张亦军;[D];中南大学;2004年
李川;[D];重庆大学;2004年
徐西堂;[D];北京化工大学;2003年
【同被引文献】
中国期刊全文数据库
何清波;冯志华;孔凡让;;[J];光学精密工程;2006年06期
刘占生;窦唯;王晓伟;赵广;;[J];航空学报;2007年03期
胡金海,谢寿生;[J];推进技术;2003年03期
陈果;;[J];机械科学与技术;2007年03期
金典顺,赵学增,李成,代礼周,叶红安;[J];半导体光电;2004年01期
李忠,曾昭翔,陈大融;[J];北方交通大学学报;1998年01期
徐如瑜,田贻丽,张海燕;[J];重庆职业技术学院学报;2004年04期
马怀祥,淮公锁,吕宝华;[J];柴油机;2000年03期
冯志鹏,杜金莲,宋希庚,迟忠先,葛玉林,孙玉明;[J];大连理工大学学报;2003年01期
谭中奇,张斌,龙兴武;[J];电子技术;2004年04期
中国博士学位论文全文数据库
李立轻;[D];东华大学;2003年
高宏力;[D];西南交通大学;2005年
占勇;[D];上海交通大学;2007年
尹传环;[D];北京交通大学;2008年
中国硕士学位论文全文数据库
侯艳丽;[D];河南大学;2005年
陈书涵;[D];中南大学;2005年
何巧萍;[D];长沙理工大学;2006年
王海军;[D];燕山大学;2007年
谭丹丹;[D];贵州大学;2007年
刘剑锋;[D];武汉理工大学;2008年
【二级参考文献】
中国期刊全文数据库
樊叔维,张兴志;[J];光学精密工程;1999年04期
崔长彩,车仁生,罗小川,叶东;[J];光学精密工程;2002年01期
孔凡让,赵吉文,刘维来,张平,何清波;[J];光学精密工程;2004年05期
赵吉文;刘永斌;苏亚辉;孔凡让;张平;;[J];光学精密工程;2006年03期
吴振锋,左洪福,刘红星,杨忠;[J];摩擦学学报;2000年02期
赵吉文,孔凡让,刘维来,李晓峰,王建平;[J];应用科学学报;2005年03期
周家林,段正澄,邓建春,李勇,邵新宇;[J];中国机械工程;2004年21期
【相似文献】
中国期刊全文数据库
康剑莉,芦亚萍,周银生;[J];润滑与密封;2005年02期
黄安雅,陈兆能,朱继梅;[J];传动技术;1997年01期
严志军,程东,朱新河,刘一梅;[J];中国设备工程;2002年06期
严志军,程东,朱新河,刘一梅;[J];中国设备工程;2002年07期
李艳军,左洪福,吴振锋,吴新民;[J];数据采集与处理;2002年01期
钟新辉;李少如;费逸伟;杨宏伟;;[J];数学的实践与认识;2008年05期
吴黎,田贤忠;[J];仪器仪表学报;2005年S1期
李兵;张培林;任国全;吴铮;;[J];润滑与密封;2007年09期
刘海涛;田雪虹;;[J];机械制造与自动化;2008年01期
余志红;王锐;;[J];现代制造工程;2010年01期
中国硕士学位论文全文数据库
刘粲;[D];华南理工大学;2011年
赵晶;[D];南京航空航天大学;2010年
刘建辉;[D];北京交通大学;2007年
杨腾河;[D];重庆大学;2008年
薛林俊;[D];南京航空航天大学;2007年
范君;[D];浙江大学;2007年
&快捷付款方式
&订购知网充值卡
400-819-9993Options for accessing this content: If you are a society or association member and require assistance with obtaining online access instructions please contact our Journal Customer Services team.
If your institution does not currently subscribe to this content, .Login via other institutional login options .You can purchase online access to this Article for a 24-hour period (price varies by title)
If you already have a Wiley Online Library or Wiley InterScience user account: login above and proceed to purchase the article.New Users: Please register, then proceed to purchase the article.
Search for your institution's name below to login via Shibboleth.
Registered Users please login:
Access your saved publications, articles and searchesManage your email alerts, orders and subscriptionsChange your contact information, including your password
Please register to:
Save publications, articles and searchesGet email alertsGet all the benefits mentioned below!Temperature dependence of electronic behaviors in quantum dimension junctionless thin-film transistor | SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Temperature dependence of electronic behaviors in quantum dimension junctionless thin-film transistorYa-Chi ChengHung-Bin ChenMing-Hung HanNan-Heng LuJun-Ji SuChi-Shen ShaoYung-Chun WuOpen AccessNano Express
The high temperature dependence of junctionless (JL) gate-all-around (GAA) poly-Si thin-film transistors (TFTs) with 2-nm-thick nanosheet channel is compared with that of JL planar TFTs. The variation of SS with temperature for JL GAA TFTs is close to the theoretical value (0.2 mV/dec/K), owing to the oxidation process to form a 2-nm-thick channel. The bandgap of 1.35 eV in JL GAA TFTs by fitting experimental data exhibits the quantum confinement effect, indicating greater suppression of Ioff than that in JL planar TFTs. The measured
of -1.34 mV/°C in JL GAA nanosheet TFTs has smaller temperature dependence than that of -5.01 mV/°C in JL planar TFTs.Junctionless Nanowire Thin-film transistor (TFTs) Gate-all-around (GAA) Quantum confinement effect
article PDFThe junctionless nanowire transistor (JNT), which contains a single doping species at the same level in its source, drain, and channel, has been recently investigated [, , , , , ]. The junctionless (JL) device is basically a gated resistor, in which the advantages of junctionless devices include (1) avoidance of the use of an ultra shallow source/drain junction, which greatly simplif (2) low thermal budgets owing to implant activation anneal after gate stack formation is eliminated, and (3) the current transport is in the bulk of the semiconductor, which reduces the impact of imperfect semiconductor/insulator interfaces. As is widely recognized, the temperature dependence of threshold voltage (Vth) is a parameter when integrated circuits often operate at an elevated temperature owing to heat generation. This effect, accompanied with the degradation of subthreshold swing (SS) with temperature, causes the fatal logic errors, leakage current, and excessive power dissipation. Despite a previous work that characterized JNTs at high temperatures [], there is no information regarding the JL thin-film transistor (TFT) at a high temperature yet. Hence, this letter presents a high-temperature operation of JL TFTs with a gate-all-around structure (GAA) for an ultra-thin channel. The JL TFT with a planar structure functions as the control device. The drain current (Id), SS, off-leakage current (Ioff), and Vth are also evaluated for fabricated devices. The JL GAA TFTs with a small variation in temperature performances along with simple fabrication are highly promising for future system-on-panel (SOP) and system-on-chip (SOC) applications.The process for producing 2-nm-thick poly-Si nanosheet channel was fabricated by initially growing a 400-nm-thick thermal silicon dioxide layer on 6-inch silicon wafers. Subsequently, a 40-nm-thick undoped amorphous silicon (a-Si) layer was deposited by low-pressure chemical vapor deposition (LPCVD) at 550°C. Then, the a-Si layer was solid-phase recrystallized (SPC) and formed large grain sizes as a channel layer at 600°C for 24 h in nitrogen ambient. The channel layer was implanted with 16-keV phosphorous ions at a dose of 1 × 1014 cm-2, followed by furnace annealing at 600°C for 4 h. Subsequently, we performed a wet trimming process with a dilute HF chemical solution at room temperature and shrink down channel thickness to be around 28 nm. The active layers, serving as channel, were defined by e-beam lithography and then mesa-etched by time-controlled wet etching of the buried oxide to release the poly-Si bodies. Subsequently, a 13-nm-thick dry oxide, consuming around 13-nm-thick poly-Si on both side of channel to form 2-nm-thick channel, and 6-nm-thick nitride by LPCVD were deposited as the gate oxide layer. The 250-nm-thick in-situ doped n + poly-silicon was deposited as a gate electrode, and patterned by e-beam and reactive ion etching. Finally, passivation layer and metallization was performed. The JL planar TFT serves as a control with single gate structure.Figure a presents the structure of the devices and relevant experimental parameters. Figure b displays the cross sectional transmission electron microscopic (TEM) images along the AA′ direction in JL GAA devices with ten the figure clearly shows that the 2-nm-thick nanosheet channel is surrounded by the gate electrode. The dimensions of each nanosheet are 2-nm high × 70-nm wide. Figure c displays the TEM images in JL planar devices, and the channel dimensions are 15-nm high × 0.95-μm wide. Figure
shows the measured Id as a function of gate bias (Vg) at various temperatures ranging from 25°C to 200°C at Vd = 0.5 V for (a) JL planar TFTs with channel length (Lg) of 1 μm, (b) JL GAA TFTs with Lg = 1 μm, and (c) JL GAA TFTs with Lg = 60 nm. This figure reveals that Vth decreases and the SS increases in all devices when increasing the temperature. Figure
presents the measured SS and Ioff as a function of temperature at Vd = 0.5 V, as extracted from the Id-Vg curves in Figure . In Figure a, the JL GAA TFTs have a small SS variation with temperature than JL planar TFTs. Furthermore, the SS can be expressed as follows []:
Figure 1 JL GAA device structure in JL TFTs and TEM images for JL GAA and JL planar. (a) The JL GAA device structure and relevant parameters in JL TFTs. The positions A and A′ indicate cross section of channel. (b,c) The TEM images along AA′ direction for JL GAA and JL planar with 2- and 15-nm channel thickness, respectively.
Figure 2 Temperature dependence (25°C to 200°C) on I d – V g characteristics at V d
= 0.5 V. For JL GAA TFTs (Lg = 1 μm (b), 60 nm (c)) and JL planar TFTs (Lg = 1 μm (a)). The Vth decreases and the SS increases with increasing temperature in both device structures.
Figure 3 Measured SS and I off as function of temperature (a,b) and simulated band diagram of GAA structure (c). (a,b) At Vd = 0.5 V, extracted from the Id – Vg curves in Figure . (c) In the off-state with discrete energy levels and the ΔEc is estimated around 0.23 eV. where kT is the thermal energy, Cox is the gate oxide capacitance per unit area, NT is the trap states, and tSi is the thickness of the poly-Si layer. Therefore, the decline in SS of JL GAA TFTs is due to a decreasing tSi and the formation of a crystal-like channel by oxidation. The variation of the SS with temperature
for JL GAA TFTs is 0.25 mV/dec/K, which is slightly larger than the theoretical value of 0.2 mV/dec/K. The results represent the second term of Equation
is small and insensitive to temperature. According to Figure b, Ioff is defined as the drain current at Vg = -1.9 V for JL planar TFTs and at Vg = -0.2 V for JL GAA TFTs, respectively. Moreover, Ioff can be expressed as follows []:
(2)where Isub is the subthreshold current, Ileak is the trap-induced leakage current, and Eg is the bandgap. The Eg could be regarded as a constant value for estimation, because
is known to be -0.27 meV/K []. Therefore, the Eg of JL planar and GAA TFTs, as extracted by Equation , is around 1.12 and 1.35 eV, respectively. Notably, quantum confinement is observed in JL GAA TFTs, resulting in band-edge shifts (ΔEc) of the conduction-band and valence-band, thereby increasing the Eg to reduce the off-state leakage current, as shown in Figure c. Figure c illustrates the band diagram of the GAA device in off-state with discrete energy levels. The GAA device is simulated by solving 3D quantum-corrected device simulation using the commercial tool, Synopsys Sentaurus Device [], [] to obtain accurate numerical results for a nanometer-scale device. These simulation performances are calibrated to experimental data of Id – Vg. The ΔEc is estimated around 0.23 eV, as extracted from the experimental data in Figure b. The theoretical analysis derived from the solution of the Schr?dinger equation for the first level in the conduction band as follows []:
(3)where me* is the electron effective mass, h is Plank's constant, Tch is the channel thickness and W is the channel width. The second term in Equation , which represents quantum confinement effect in the channel width direction, can be ignored due to W & & Tch. The ΔVth of theoretical value is 0.36 eV, which is larger than experimental value of 0.23 eV. The gap would come from the poly-Si channel material.Figure a presents the measured Vth as a function of temperature. The Vth is defined as the gate voltage at Id = 10-9 A. The temperature coefficients of Vth are -1.34 and -5.01 mV/°C for GAA and planar JL TFTs, respectively. According to [], the variation of
in n-type JL devices can be expressed as follows []:
Figure 4 Impact of temperature dependence on the (a) V th and (b) on-state currents. For JL GAA TFTs (Lg = 1 μm, 60 nm) and JL planar TFTs (Lg = 1 μm). The Vth and Ion for JL GAA TFTs are less sensitive to temperature than JL planar TFTs. where Vfb is the flat-band voltage, Cox is the gate oxide capacitance per unit length, A is the device cross-sectional area and P is the gate perimeter. The first term in the right side of Equation
is depended on the flat-band voltage variation with temperature. For ND = 1 × 1019 cm-3, the value of
is approach to -0.49 mV/°C as the devices in [], which has a P+ polycrystalline silicon gate and the same doping concentration. The second term represents the effect of incomplete ionization. The doped impurities are almost completely ionized at those temperatures higher than room temperature. Thus, the doping concentration variation with the temperature
has a slight dependence on temperature. The third term, depending on the electron effective mass, also has a smaller dependence on T than the other terms. The theoretical value of
is about -0.49 mV/°C; although the
of -1.34 mV/°C in JL GAA TFTs is larger than theoretical value, but is comparable with current SOI-based JNT (
approximately -1.63 mV/°C) [] due to the use of the multi-gate structure and formation of a crystal-like nanosheet channel with fewer traps by oxidation process. Therefore, JL TFTs with the GAA structure and ultra-thin channel shows an excellent immunity to the temperature dependence on Vth and competes with SOI-based JNT. Figure b presents the measured on-current (Ion) as a function of temperature. The Ion is defined as the drain current at Vg = 3 V for JL planar TFTs and at Vg = 6 V for JL GAA TFTs. The JL GAA TFTs show a slightly better Ion variation with temperature than the planar ones, possibly owing to a smaller
in JL GAA TFTs.This work has presented a high-temperature operation of JL TFTs. The high temperature dependence of JL GAA and planar TFTs is also studied. The variation of parameters such as Vth, Ion, SS, and Ioff are analyzed as well. The variation of the SS with temperature for JL GAA TFTs is close to the ideal value (0.2 mV/dec/K) owing to the ability of the oxidation process to form a nanosheet channel and crystal-like channel. Additionally, Ioff is negligibly small for JL GAA TFTs, owing to quantu its Eg of 1.35 eV is also extracted. The JL GAA TFTs have a smaller
than that of JL planar TFTs owing to the GAA structure and ultra-thin channel. Moreover, the measured
of JL GAA TFTs competes with that of SOI-based JNTs. Therefore, the JL GAA TFTs with a slight variation in temperature performances along with simple fabrication are highly promising for future SOP and system-on-chip SOC applications.The authors would like to acknowledge the National Science Council of Taiwan for supporting this research under Contract No. MOST 103-2221-E-007 -114 -MY3. The National Nano Device Laboratories is greatly appreciated for its technical support.The authors declare that they have no competing interests.YCC and HB handled the experiment and drafted the manuscript. MH made the simulation plot and performed the electrical analysis. NH, JJ, and CS fabricated the samples and carried out the electrical characterization. YCW supervised the work and reviewed the manuscript. All authors read and approved the final manuscript.
(155 kb) Authors’ original file for figure 1
(103 kb) Authors’ original file for figure 2
(67 kb) Authors’ original file for figure 3
(80 kb) Authors’ original file for figure 4
1.Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge JP: Junctionless multigate field-effect transistor. Appl Phys Lett 3/1.30794112.Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neil B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R: Nanowire transistors without junctions. Nat Nanotechnol 5. 10.1038/nnano.2010.153.Colinge JP, Lee CW, Ferain I, Akhavan ND, Yan R, Razavi P, Yu R, Nazarov AN, Doria RT: Reduced electric field in junctionless transistors. Appl Phys Lett 3/1.32990144.Lin HD, Lin CI, Huang TY: Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel. IEEE Electron Device Lett .5.Su CJ, Tsai TI, Liou YL, Lin ZM, Lin HC, Chao TS: Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels. IEEE Electron Device Lett 1.6.Rios R, Cappellani A, Armstrong M, Budrevich A, Gomez H, Pai R, Rahhal-orabi N, Kuhn K: Comparison of Junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett 70.7.Lee CW, Borne A, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP: High-temperature performance of silicon junctionless MOSFETs. IEEE Electron Device 0.8.Dimitriadis CA: Gate bias instability in hydrogenated polycrystalline silicon thin film transistors. J Appl Phys 24. 10.95259.Guo X, Ishii T, Silva SRP: Improving switching performance of thin-film transistors in disordered silicon. IEEE Electron Device Lett 8.10.Sze SM, Ng K: Physics of Semiconductor Devices. 3rd edition. New York: W 2007.11.Synopsys, Inc: Sentaurus Device User Guide. Mountain View: Version I-13.12.Ancona MG, Iafrate GJ: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys Rev B 36. 10.1103/PhysRevB.39.953613.Trevisoli RD, Doria RT, de Souza M, Pavanello MA: Threshold voltage in junctionless nanowire transistors. Semiconductor Sci Technol .Ya-Chi Cheng1Hung-Bin Chen12Ming-Hung Han2Nan-Heng Lu1Jun-Ji Su1Chi-Shen Shao2Yung-Chun Wu11.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan2.Department of Electronics Engineering & Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwan
We use cookies to improve your experience with our site.

我要回帖

更多关于 乒乓球桌长度 的文章

 

随机推荐