什么元素是干电池的正极材料上市公司

扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
一般干电池的负极是用什么制成的正极是用什么制成的
尼古丁8362
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
石墨(稳定) 正极锌(活泼) 负极
为您推荐:
其他类似问题
干电池的负极:锌做的圆筒干电池的正极:主要是碳棒
负极:锌正极:石墨
最早使用的化学电池是锌锰电池,即大家所熟悉的干电池锌为负极,碳棒为正电池是由活泼金属为正
石墨.和铜
扫描下载二维码原电池_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
通过氧化还原反应而产生电流的装置称为原电池,也可以说是把化学能转变成电能的装置。有的原电池可以构成可逆电池,有的原电池则不属于可逆电池。原电池放电时,负极发生氧化反应,正极发生还原反应。例如铜锌原电池又称丹聂尔电池,其正极是铜极,浸中硫酸溶液中;负极是锌板,浸在硫酸锌溶液中。两种电解质溶液用盐桥勾通,两极用导线相连就组成原电池。平时使用的干电池,是根据原电池原理制成的。[1]
原电池简介
原电池发现
原电池的发明历史可追溯到18世纪末期,当时
丹尼尔电池示意图
意大利生物学家正在进行著名的青蛙实验,当用金属手术刀接触蛙腿时,发现蛙腿会抽搐。大名鼎鼎的伏特认为这是金属与蛙腿组织液(电解质溶液)之间产生的电流刺激造成的。1800年,伏特据此设计出了被称为的装置,锌为负极,银为正极,用盐水作电解质溶液。1836年,丹尼尔发明了世界上第一个实用电池,并用于早期铁路信号灯。
原电池工作原理
属于放热的反应,一般是氧化还原反应,但区别于一般的氧化还原反应的是,电子转移不是通过氧化剂和还原剂之间的有效碰撞完成的,而是还原剂在负极上失电子发生氧化反应,电子通过外电路输送到正极上,氧化剂在正极上得电子发生还原反应,从而完成和氧化剂之间电子的转移。两极之间溶液中离子的定向移动和外部导线中电子的定向移动构成了闭合回路,使两个不断进行,发生有序的电子转移过程,产生电流,实现化学能向电能的转化。
原电池的工作原理
但是,需要注意,非氧化还原反应一样可以设计成原电池。从能量转化角度看,原电池是将化学能转化为电能的装置;从化学反应角度看,原电池的原理是氧化还原反应中的还原剂失去的电子经外接导线传递给氧化剂,使氧化还原反应分别在两个电极上进行。
原电池形成条件
1.电极材料由两种金属活泼性不同的金属或由金属与其他导电的材料(非金属或某些氧化物等)组成。
2.电解质存在。
3.两电极之间有导线连接,形成闭合回路。
4.发生的反应是自发的氧化还原反应。
只要具备前三个条件就可构成原电池。而因为要求可以提供持续而稳定的电流,所以除了必须具备原电池的三个构成条件之外,还要求有自发进行的化学反应。也就是说,化学电源必须是原电池,但原电池不一定都能做化学电池。
形成前提:总反应为自发的化学反应。
原电池常见电极
a.活泼性不同的金属:如锌铜原电池,锌作负极,铜作正极;
b.金属和非金属(非金属必须能导电):如锌锰干电池,锌作负极,石墨作正极;
c.金属与化合物如:铅蓄电池,铅板作负极,二氧化铅作正极;
d.惰性电极如:氢氧燃料电池,电极均为铂。
原电池电极判断
负极:电子流出的一极(负极定义);化合价升高的一极;发生氧化反应的一极;活泼性相对较强(有时候也要考虑到电解质溶液对两极的影响)金属的一极。(仅适用于原电池)
正极:电子流入的一极(正极定义);化合价降低的一极;发生还原反应的一极;相对不活泼(有时候也要考虑到电解质溶液对两极的影响)的金属或其它导体的一极。(仅适用于原电池)
阳极:发生氧化反应的电极(阳极定义)
阴极:发生还原反应的电极(阴极定义)
在原电池中,外电路为电子导电,电解质溶液中为离子导电。
原电池表示方法
为书写简便,原电池的装置常用方便而科学的符号来表示。其写法习惯上遵循如下几点规定:
1. 一般把负极(如Zn棒与Zn2+离子溶液)写在电池符号表示式的左边,正极(如Cu棒与Cu2+离子溶液)写在电池符号表示式的右边。
2. 以化学式表示电池中各物质的组成,溶液要标上活度或浓度(mol/L),若为气体物质应注明其分压(Pa),还应标明当时的温度。如不写出,则温度为298.15K,为101.325kPa,溶液浓度为1mol/L。
3. 以符号“∣”表示不同物相之间的接界,用“‖”表示盐桥。同一相中的不同物质之间用“,”隔开。
4. 非金属或气体不导电,因此非金属元素在不同氧化值时构成的氧化还原电对作半电池时,需外加惰性导体(如
铂或石墨等)做电极导体。其中,惰性导体不参与,只起导电(输送或接送电子)的作用,故称为“惰性”电极。
按上述规定,Cu-Zn原电池可用如下电池符号表示:
(-)Zn(s)∣Zn2+ (C)‖Cu2+ (C)∣ Cu(s) (+)
理论上,任何氧化还原反应都可以设计成原电池,例如反应:
Cl2+ 2H- ═ 2Cl- +H2此反应可分解为两个半电池反应:
负极:2H- ═ H2+ 2e-(氧化反应)
正极:Cl2+2e- ═ 2Cl-(还原反应)
该原电池的符号为:
(-)Pt∣ I2(s)∣I- (C)‖Cl- (C)∣C2(PCL2) ∣Pt(+)
原电池应用
1、直接转换成电能输出的装置。又称。由于各种型号的原电池氧化还原反应的可逆性很差,放完电后,不能重复使用,故又称。它通常由正电极、负电极、、隔离物和壳体构成,可制成各种形状和不同尺寸,使用方便。广泛用于工农业、国防工业和通信、照明、医疗等部门
,并成为日常生活中收音机、录音机、照相机、计算器、电子表、玩具、助听器等常用电器的电源。原电池一般按活性物质(如锌、镉、镁、锂等)和活性物质(如锰、汞、二氧化硫、氟化碳等)分为锌锰电池、、、、镁锰电池、锂氟化碳电池、锂二氧化硫电池等。锌锰电池产量最大,常按分为氯化铵型和型,并按其分为糊式电池和低极电池。以为电解质的锌锰电池,由于其负极(锌)的构造与其他锌锰电池不同而习惯上另作一类,称为,简称碱锰电池,俗称碱性电池。
2、金属的腐蚀与防护
①改变金属内部结构(如把钢中加Cr、Ni制成不锈钢)
②在金属表面覆盖保护层
a、在钢铁表面涂矿物性油脂、油漆或覆盖搪瓷、塑料等物质。
b、用电镀、热镀、喷镀的方法,在钢铁表面镀上一层不易被腐蚀的金属。
c、用化学方法使钢铁表面生成一层致密而稳定的氧化膜。(表面钝化)
③电化学保护法
a外加电流的阴极保护法(把被保护的设备与外接电源的负极相连)
b牺牲阳极的阴极保护法(被保护的设备与活泼的金属相连接)
3、判断金属的活泼性
4、加快反应速率[2]
原电池常见电池
原电池锌锰干电池
锌-锰电池具有原材料来源丰富、工艺简单,价格便宜、使用方便等优点,成为人们使用最多、最广泛的电池品种。锌-锰电池以锌为负极,以为。按照基本结构,锌-锰电池可制成圆筒形、扣式和扁形,扁形电池不能单个使用,可组合叠层电池(组)。按照所用电解液的差别将锌-锰电池分为三个类型:
(1)铵型锌-锰电池:电解质以氯化铵为主,含少量氯化锌。
电池符号:(-) Zn│NH4Cl·ZnCl2│MnO2 │C(石墨)(+)
总电池反应: Zn+2NH4Cl+2MnO2=[Zn(NH3)2]Cl2+Mn2O3+H2O
(2) 锌型锌-锰电池:又称高功率锌-锰电池,电解质为氯化锌,具有防漏性能好,能大功率放电及能量密度较高等优点,是锌-锰电池的第二代产品,20世纪70年代初首先由德国推出。与铵
型电池相比锌型电池长时间不产生水,因此电池不易。
电池符号:(-) Zn│ZnCl2│MnO2 (+)
总电池反应(长时间放电):
Zn+2Zn(OH)Cl+6MnO(OH)=ZnCl2·2ZnO·4H2O+2Mn3O4
(3) 碱性锌-锰电池:这是锌-锰电池的第三代产品,具有大功率放电性能好、能量密度高和低温性能好等优点。
电池符号:(-) Zn│KOH│MnO2 (+)
总电池反应: Zn+2H2O+MnO2=Mn(OH)2+Zn(OH)2
锌-锰电池额定开路电压为1.5V,实际开路电压1.5-1.8V ,其工作电压与放电负荷有关,负荷越重或放电电阻越小,闭路电压越低。用于手电筒照明时,典型终止电压为0.9V,某些收音机允许电压降至0.75V。
原电池锂原电池
又称锂电池,是以金属锂为负极的电池总称。锂的最负最小,良好,可制成一系列贮存寿命长,工作温度范围宽的高能电池。根据电解液和正极物质的物理状态,锂电池有三种不同的类型,即:固体正极—有机电池、液体正极—液体电解质电池、固体正极—电池。Li—(CF)n的开路电压为3.3V,为480W·h·L-1,工作温度在-55~70℃间,在20℃下可贮存10年之久!它们都是研制的新产品,主要用于军事、空间技术等特殊领域,在心脏起搏器等微、小功率场合也有应用。
锂电池与锂离子电池不同。前者是一次电池,后者可反复充电。
原电池蓄电池
蓄电池在放电过程中属于原电池反应。这类都有电解质溶液参与,如果能分析清楚电解质溶液是否参与电极反应,那么的和的电极反应式的书写就可迎刃而解了。
现以铅酸蓄电池为例来分析电极反应式的书写方法。
铅酸蓄电池的总反应为:Pb+ PbO2+2H2SO4=2PbSO4+2H2O
根据原电池的工作原理分析,负极失去电子发生氧化反应,可知:Pb–2e-=Pb2+①,生成的Pb2+进入电解质溶液中,Pb2+与溶液中的SO42-不能共存,要继续反应生成PbSO4,即:Pb2++SO42-=PbSO4②,因此在原电池的负极反应式为①+②即:Pb–2e-+SO42-=PbSO4;正极是得电子发生还原反应的一极,则有:PbO2+2e-=Pb2++2O2-①,Pb2+和O2-进入溶液中,由于电解质溶液是H2SO4溶液,O2-在酸性环境中,不能单独存在,可供O2-结合的微粒有H+和H2O,O2-在酸性环境中优先结合H+生成H2O,这样在正极发生的反应有:4H++2O2-=2H2O②;Pb2++SO42-=PbSO4③根据以上分析可知正极反应式为①+②+③即:PbO2+2e-+SO42-+4H+=PbSO4+2H2O。(注意:在中应遵循和;在反应式与反应式相加求总反应时要注意得失要相等。)
再如:Ag—Zn高能电池(钮扣电池)由Ag2O、Zn及KOH溶液组成。总反应为:Zn+Ag2O+H2O=Zn(OH)2+2Ag
根据原电池原理可知:Zn做负,Ag2O做正极,电解质溶液为KOH溶液。极失去电子发生,则负极反应为:Zn–2e-=Zn2+,Zn2+进入溶液后又与溶液中的OH-反应Zn2++2OH-=Zn(OH)2。
所以负极反应为:Zn–2e-+2OH-=Zn(OH)2;
正极为Ag2O得到电子发生还原反应,即Ag2O+2e-=2Ag+O2-;
O2-在中性或碱性环境中也不能单独存在,只能结合H2O生成OH-,故在中性或碱性条件下O2-+H2O=2OH-,所以正极反应式为:Ag2O+2e-+H2O=2Ag+2OH-。
原电池原电池腐蚀
原电池腐蚀亦称电偶腐蚀或双金属腐蚀。是由相互接触的两种不同金属材料与周围导电溶液组成原电池而引起的电化学腐蚀(见腐蚀类型)。其中作为阳极的金属发生溶解,造成蚀损; 作为阴极的金属,则往往得到保护。海洋开发中的机械设备和各种构筑物经常是用不同金属材料制造的,周围海水又是导电性良好的电解质溶液,所
以,原电池腐蚀颇为常见。原电池腐蚀与不同金属材料在海水中的自然电势之差,以及它们的相对面积之比和距离有关。电势相差越大,阴极面积越大,阳极极化越小,回路电阻越小,则阳极腐蚀情况越严重; 反之亦然。在海洋大气带,原电池腐蚀一般只局限在不同金属连接处附近,属于局部原电池腐蚀。在海水全浸条件下,原电池作用可以远至百米,例如青铜螺旋桨和船体裸露钢板之间,可以构成大型原电池而造成船体腐蚀。
控制或减轻原电池腐蚀的措施有:
1、在设计和施工中尽量避免或消除形成原电池的可能因素,例如选用相同材料或自然电势相近的材料制做整体结构;
2、避免不同金属材料,特别是自然电势相差较大的材料直接接触,必要时应使两者之间保持良好的绝缘;
3、尽量减小阴极区的相对面积,包括在阴极区面上涂漆覆盖;
4、设计阳极区部件时可考虑便于更换或加大余量;
5、适当选用缓蚀剂(见缓蚀剂);
6、施加阴极保护(见阴极保护)等。[3]
原电池电极反应
负极:活泼金属失电子,看阳离子能否在电解液中大量存在。如果金属阳离子不能与电解液中的,则进行进一步的反应。例:中,电解液为KOH,负极甲烷失8个电子生成CO2和H2O,但CO2不能与OH-共存,要进一步反应生成碳酸根。
正极:①当负极材料能与电解液直接反应时,溶液中的阳离子得电子。例:锌铜原电池中,电解液为HCl,正极H+得电子生成H2。②当负极材料不能与电解液反应时,溶解在电解液中的O2得电子。如果电解液呈酸性,O2+4e-+4H+==2H2O;如果电解液呈中性或碱性,O2+4e-+2H2O==4OH-。
特殊情况:Mg-Al-NaOH,极。负极:Al-3e-+4OH-==AlO2-+2H2O;:2H2O+2e-==H2↑+2OH-
Cu-Al-HNO3,Cu作负极。
注意:Fe作负极时,氧化产物是Fe2+而不可能是Fe3+;肼(N2H4)和NH3的电池反应产物是H2O和N2
无论是总反应,还是电极反应,都必须满足电子守恒、电荷守恒、质量守恒。
pH变化规律
电极周围:消耗OH-(H+),则电极周围溶液的pH减小(增大);反应生成OH-(H+),则电极周围溶液的pH增大(减小)。切记,电极周围只要消耗OH-,PH就减小,不会受“原电池中OH-()向移动”的影响。
溶液:若总反应的结果是消耗OH-(H+),则溶液的pH减小(增大);若总反应的结果是生成OH-(H+),则溶液的pH增大(减小);若总反应消耗和生成OH-(H+)的物质的量相等,则溶液的pH由溶液的酸碱性决定,溶液呈碱性则pH增大,溶液呈酸性则pH减小,溶液呈中性则pH不变。
1.Cu─H2SO4─Zn原电池
正极:2H+ +2e- →H2↑
负极:Zn-2e- →Zn2+
总反应式:Zn+2H+→Zn2++H2↑
2.Cu─FeCl3─C原电池
正极:2Fe3+ + 2e- →2Fe2+
负极:Cu-2e- →Cu2+
总反应式:2Fe3+ +Cu→2Fe2+ +Cu2+
3.钢铁在潮湿的空气中发生吸氧腐蚀
正极:O2+2H2O+4e- →4OH-
负极:2Fe-4e-→2Fe2+
总反应式:2Fe+O2+2H2O→2Fe(OH)2
4.氢氧燃料电池(碱性介质)
正极:O2+2H2O+4e- →4OH-
负极:2H2-4e- +4OH- →4H2O
总反应式:2H2+O2→2H2O
5.氢氧燃料电池(酸性介质)
正极:O2+4H+ + 4e-→2H2O
负极:2H2-4e- →4H+
总反应式:2H2+O2→2H2O
6.氢氧燃料电池(中性介质)
正极:O2+2H2O+4e- → 4OH-
负极:2H2-4e- →4H+
总反应式:2H2+O2→2H2O
7.铅蓄电池(放电)
正极 (PbO2) :
PbO2+2e- +SO42- +4H+ →PbSO4+2H2O
负极 (Pb) :Pb-2e- +SO42- →PbSO4
总反应式:
Pb+PbO2+4H++2SO42-=2PbSO4+2H2O
8.Al─NaOH─Mg原电池
正极:6H2O+6e- →3H2↑+6OH-
负极:2Al-6e- +8OH- →2AlO2-+4H2O
总反应式:2Al+2OH- +2H2O=2AlO2- + 3H2↑
9.CH4燃料电池(碱性介质)
正极:2O2+4H2O+8e- →8OH-
负极:CH4-8e- +10OH- →CO32-+7H2O
总反应式:CH4+2O2+2OH-=CO32-+3H2O
10.熔融碳酸盐燃料电池
(Li2CO3和Na2CO3熔融盐作电解液,CO作燃料):
正极:O2+2CO2+4e- →2CO32-(持续补充CO2气体)
负极:2CO+2CO32--4e- →4CO2
总反应式:2CO+O2=2CO2
11.银锌纽扣电池(碱性介质)
正极 (Ag2O) :Ag2O+H2O+2e- →2Ag+2OH-
负极 (Zn) :Zn+2OH--2e- →ZnO+H2O
总反应式:Zn+Ag2O=ZnO+2Ag
12. 碱性锌锰电池(KOH介质)
正极(MnO2):2MnO2+2H2O+2e- →2MnOOH+2OH-
负极(Zn):Zn+2OH--2e- →Zn(OH)2
总反应式:Zn+2MnO2+2H2O→2MnOOH+Zn(OH)2
原电池标准
为安全使用和处理原电池,日,中国国家标准化管理委员会(SAC)发布了国家标准《民用原电池安全通用要求》。本标准规定了民用原电池的分类、安全性能要求、标志、电池选购、使用、更换和处理指南、电器具的电池舱安全设计指南。
本标准适用于民用的各类水溶液电解质原电池(碱性和非碱性锌-二氧化锰电池、锌-氧化银电池、锌-羟基氧化镍电池、碱性和中性锌-空气电池)以及各类锂原电池(锂-氟化碳电池、锂-二氧化锰电池、锂-亚硫酰氯电池、锂-二硫化铁电池、锂-二氧化硫和锂-氧化铜电池等)的生产、检测和验收。[4]
.中国工具书网络出版总库[引用日期]
.百度文库.[引用日期]
.中国工具书网络出版总库[引用日期]
.中国电池网[引用日期]
本词条内容贡献者为
教授、博导审核【干货】锂电池正极材料的现状和未来发展趋势
我的图书馆
【干货】锂电池正极材料的现状和未来发展趋势
锂离子电池可以说是目前世界上应用最成熟最广泛的新能源,如手机电脑等便携式电子产品,电动汽车,电动工具,储能项目。特别是当前中国政府和资本疯狂投资支持新能源汽车和动力电池产业的发展。放眼未来,锂电产业还有很长的一段路要走,比如高能量密度体系的开发,成本的进一步降低,资源的回收和利用等问题摆在我们面前。今天给大家介绍下关于锂离子电池材料的现状和未来发展趋势。我们知道锂电里所有的材料无非来自于自然界,那首先看一下元素周期表哪些元素能为我们所用呢?图1a为相关各种元素的价格和在地球上的储量;b为相关元素的质量比容量和体积比容量上面只是让大家对正负极材料相关的元素有一个印象,并不能代表化合物本身的性质和可用性,下面大家再看一个更直观和经典的图表。图2a.常见的正极材料电位和克容量值(LFSF-氟化铁酸锂铁,LTS-硫化锂钛);b.转化型正极材料的电位和克容量值;c.常见的负极材料电位和克容量值;d.所有的正负极材料电位和容量的均值图3一般情况下增强电池材料性能的策略如上图3所示:a.减小活性材料的粒径尺寸:带来更快的离子电子传导率/更高的表面活性/改善机械稳定性;b.形成复合材料:引入导电介质/机械支撑机构;c.掺杂和接枝官能团;d.微调粒子的形态;e.表面包覆;f.对电解质的改性。正极材料这里主要包括LCO,尖晶石LMO,橄榄石LFP等晶体结构。大多数正极材料研究集中在过渡金属氧化物和聚阴离子化合物上,因为它们具有较高的电压和较高的容量(100-200mAh/g和3-5V平均电压)。图4中(e)给出了这些典型的正极材料充放电曲线。图4以下列举了具有代表性想正极材料特性以及目前的发展水平:表1过渡金属氧化物1.钴酸锂LCOLCO正极材料是由Goodenough首次提出,并且由Sony首先将其并成功商业化。优点是高比容量,高电压,低自放电已经良好的循环性能,至今仍广泛应用。主要的缺点是成本高,热稳定性差和高倍率和深循环的容量的快速衰上。成本高是由于Co元素的价格高,可以在图一中看到Co的价格。热稳定性差是指高温150℃状态下正极LCO结构被破坏释放出大量的热造成电池热失控起火爆炸。LCO是目前商业化正极材料中热稳定性最差的。虽然热稳定性也在很大程度上取决于非材料因素,例如电池设计和电池尺寸,但由于释放的氧和有机材料之间的放热反应,LCO通常经历超过200℃的热失控。深循环(脱锂电位4.2V以上,意味着大约50%以上的Li脱出)导致晶格畸变从而恶化循环性能。对LCO的改性方面:对许多不同金属(Mn,Al,Fe,Cr)作为钴掺杂剂/部分代用品进行过研究,虽然证明有一些效果,但对性能的提升有限。各种金属氧化物的涂层(Al2O3,B2O3,TiO2,ZrO2),因为他们的机械和化学稳定性可以减少LCO的结构变化和与电解质的副反应,增强的LCO稳定性,甚至对深循环性能特性有一定改善。2.镍酸锂LNOLNO具有和LiCoO相同的晶体结构和275mAh/g的类似理论比容量,与LCO相比主要在成本上低很多,但是LNO的问题在于Ni2 有替代Li 的倾向,在脱嵌Li的过程中会堵住Li的扩散通道。安全性和稳定性方面LNO比LCO更容易造成热失控。另外改性上可以在高SOC条件下的热稳定性差可通过Mg掺杂来改善,添加少量Al能提高其热稳定性和电化学性能.3.镍钴铝酸锂NCALiNi0.8Co0.15Al0.05O2(NCA)目前已经被商业化应用,例如松下为Tesla开发的动力电池。其优点在于拥有较高的比容量200mAh/g和相对LCO更好的日历寿命。但在国内刚刚处于起步阶段。关于其失效模式在于其在高温下(40-70℃)由于SEI和微裂纹的生长导致容量衰减,当然NCA这种材料从合成到电池生产对产线的环境控制要求极为苛刻,在国内大规模应用还需要时日,我们拭目以待。4.锰酸锂LMOLMO由于其稳定性和较低的成本优势也得到了广泛的应用,但是其主要缺点是较差的循环性能,原因是在Li脱出的过程中其层状结构有变为尖晶石结构的趋势和循环过程中Mn的溶解的不利影响。具体讲是由于Mn3 的歧化反应形成Mn2 和Mn4 ,2价Mn离子可以溶解在电解质中破坏负极的SEI,所有含Mn的正极都存在这个反应。伴随着含Mn电极的电池老化,电解质和负极中Mn的含量逐渐增加,石墨负极阻抗变大。但对比LTO负极没有显著的变化(如下图中红色曲线),这是由于LTO负极的电位高于石墨负极。在改性方面一般采用阳离子参杂改善LMO的高温循环稳定性。5.镍钴锰酸锂NMCNMC是现今锂离子电池研究的一大热点,与钴酸锂相比,具有以下显著优势:成本低:由于含钴少,成本仅相当于钴酸锂的1/4且更绿色环保。安全性好:安全工作温度可达170℃,而钴酸锂仅为130℃电池的循环使用寿命延长了45%。另外值得一提的是与NCA类似的高Ni三元材料(LiNi0.8Co0.1Mn0.1O2)有更高的能量/功率密度(能够在高Ni含量下会有更多的Li脱出而保持其结构稳定)。目前应用的常规523和622体系则是加入更多的Mn和Co是为了更好的平衡安全和循环性能。聚阴离子型化合物1.磷酸铁锂LFPLFP拥有良好的热稳定性和功率性能,结构如图4C,其主要缺点是较低的电位和较差的离子导电性。对LFP进行纳米化,碳包覆和金属参杂是提高其性能的方法。如果不用炭包覆有纳米化的LFP,使用性能较好的导电剂混合使用也同样可实现良好的导电性。通常纳米化的LFP电极材料的低压实密度限制了LFP电池的能量密度。其它橄榄石结构包括LiMnPO4(LMP),比LFP提高了0.4V的平均电压(表1),从而提高了能量密度。此外还有Li3V2(PO4)3(LVP)有相当高的工作电压(4.0V)和良好的容量(197mAh/g)。LVP/C纳米复合材料在5C的高倍率下也表现出95%的理论容量,低温下也表现出比LFP好的性能。但是LVP没有大规模应用的原因主要在于1.合成的成本和原材料的毒性对环境和人体的伤害2.在高压下电解质的匹配问题。2.LiFeSO4F(LFSF)另外一种聚阴离子盐材料LFSF,其具有3.6V平台和相对较高的理论比容量(151mAh/g),而且LiFeSO4F具有更好的离子/电子导电性,因此它基本不需要碳涂层或纳米化颗粒。电化学如下图6所示。图6文章来源:第一电动网
TA的最新馆藏
喜欢该文的人也喜欢

我要回帖

更多关于 三元正极材料 的文章

 

随机推荐