怎么用STATA用r检验异方差时间序列数据的异方差

苹果/安卓/wp
积分 1271, 距离下一级还需 104 积分
权限: 自定义头衔, 签名中使用图片, 隐身
道具: 彩虹炫, 涂鸦板, 雷达卡, 热点灯, 金钱卡, 显身卡, 匿名卡, 抢沙发下一级可获得
权限: 设置帖子权限道具: 提升卡
购买后可立即获得
权限: 隐身
道具: 金钱卡, 彩虹炫, 雷达卡, 热点灯, 涂鸦板
开心签到天数: 19 天连续签到: 1 天[LV.4]偶尔看看III
本帖最后由 fei355 于
07:34 编辑
& && && &&&本文仅限于学术讨论,由于本人学术水平所限,对面板数据模型的讨论权当抛砖引玉,期待大家共同参与讨论,一方面为新手提供一个简单的入门捷径,另外也为面板数据模型中的难点加以探讨!(不喜勿拍砖)面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程, Hadri Z统计量的检验原假设为不存在普通的单位根过程。有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。步骤二:协整检验或模型修正情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。如果只含有两个解释变量,则两个变量的单整阶数应该相同。也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。我们主要采用的是Pedroni、Kao、Johansen的方法。通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。
这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B后),那么我们便可以说X是Y的原因。考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger原因”。同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。此时的研究转向新的模型,但要保证模型具有经济意义。因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。难道你称其为变动率的变动率?步骤三:面板模型的选择与回归面板数据模型的选择通常有三种形式:一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。一种是固定效应模型(Fixed Effects Regression Model)。又分为三种:时期固定效应、个体固定效应、时间个体双固定效应。这是文献中常常被人忽视的,但是如果在空间面板数据下,这种区分非常必要和有价值!而在stata中实现有一定的难度。固定效应的各种模型的选择用固定效应的F检验实现。对于混合回归和固定效应的选择一般采用Wald检验或者似然比检验。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。一种是随机效应模型(Random Effects Regression Model)。如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。估计方法采用PCSE(Panel Corrected Standard Errors,面板校正标准误)方法。Beck和Katz(1995)引入的PCSE估计方法是面板数据模型估计方法的一个创新,可以有效的处理复杂的面板误差结构,如同步相关,异方差,序列相关等,在样本量不够大时尤为有用。结合之前写的帖子:
()可以实现很好的应用!祝新年快乐!
载入中......
鼓励积极发帖讨论
总评分:&经验 + 40&
学术水平 + 4&
热心指数 + 5&
信用等级 + 2&
本帖被以下文库推荐
& |主题: 786, 订阅: 219
我就是我!
xiexiexiexie
有没有专门分析two-wave面板的方法?
研究需要我们共同努力!
帖子很详细和精彩,补充下连老师的PVAR2命令可以做基于面板VAR模型的格兰杰因果检验,而XTTEST命令做基于误差修正模型的面板格兰杰因果检验。
XTWEST命令,上面打错一个字母
PX0706 发表于
XTWEST命令,上面打错一个字母补充的太好了!这方面得向你学习了!
我就是我!
fei355 发表于
补充的太好了!这方面得向你学习了!过奖了,面板协整理论我研究比较久啦,有时间我们多交流!
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
如有投资本站或合作意向,请联系(010-);
邮箱:service@pinggu.org
投诉或不良信息处理:(010-)
论坛法律顾问:王进律师苹果/安卓/wp
积分 23, 距离下一级还需 1 积分
道具: 彩虹炫, 涂鸦板, 雷达卡, 热点灯, 金钱卡
购买后可立即获得
权限: 隐身
道具: 金钱卡, 彩虹炫, 雷达卡, 热点灯, 涂鸦板
本帖最后由 蓝色 于
14:03 编辑
rt!急用,谢谢!!
载入中......
本帖被以下文库推荐
& |主题: 786, 订阅: 219
一般来讲,时间序列数据较少出现异方差现象,更多地是序列相关问题。用stata软件实现异方差的检验,最直观的是用图示法。作出残差关于某一解释变量的散点图,具体的命令如下:reg 被解释变量名 解释变量名prrdict e, residgraph twoway scatter e 解释变量名此外,还有white检验、G-Q检验和Breuch-Pagan LM检验。white检验不是stata官方的命令,需要单独下载补丁,G-Q检验则需要对变量有较多的先验认识。我重点介绍一下B-P LM检验在stata中的实现:在执行完回归指令regress以后,用 hettest 变量名&& 这个命令就能实现。其中变量名只包括除常数项以外的所有解释变量名称。你可以逐个命令进行操作,也可以用批处理的方式来实现。至于检验的原理不用在这里说了吧?不太明白的话建议查查书。序列相关性的检验1、D-W检验reg y x1 x2 x3estat dwatson(y为被解释变量 x为解释变量,执行上述命令便可得到D-W值,不过该检验存在无法判断的盲区且只能对一阶自相关进行检验)2、Box and Pierce's Q&检验reg y x1 x2 x3predict e, residwntestq e, lags(n)(n为滞后阶数,可以由少及多尝试几次)
热心帮助其他会员
总评分:&经验 + 12&
学术水平 + 2&
热心指数 + 4&
信用等级 + 2&
我补一下, D.W 可以作为对自相关检验, 但它只是检测一阶滞后量有无自相关,在时间序列中& 只检测变量一阶滞后的自相关性远远不够, 因此, 我们可以用:Breusch-Godfrey检验, 检测多阶滞后量的自相关在STATA中, 我们可以用:estat bgodfrey 语句,在回归后, 检测误差项的自相关。
总评分:&经验 + 12&
学术水平 + 1&
热心指数 + 1&
另外, 时间序列数据中& 出现异方差的概率不是很高。(至于原因,去查伍德里奇的书)所以你在处理时间序列数据的时候& 应该不是先考虑异方差性, 而是变量的自相关性,就是先要对数据进行诊断测试。&看他们是不是平稳序列。 如果不是平稳序列的话, 那你还有很多事情要做。比如,如果数据不是平稳序列, 你可以取变量的一阶差分来进行回归。 在这里不多描述了,网页上不能用公式,所以描述出来怕出错误。好运~!
最后, 推荐一本书,我在论坛里见到过PDF的影印版An Introduction to Modern Econometrics Using Stata, Christopher F. Baum但是这本书侧重面板数据的分析, 只有少量的地方涉及到了时间序列。
水能帮帮我
&补充:在Stata中,也可用官方命令进行异方差的White检验,命令如下:reg y x1 x2estat imtest,white
不错,多谢!!!!
收藏一个。但是貌似各种检验方法的适用情况没写明。
还是看下Alion的笔迹,上面关于自相关的章节写的很清楚了.
good&&挺好的 收藏下 !
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
&nbsp&nbsp|
如有投资本站或合作意向,请联系(010-);
邮箱:service@pinggu.org
投诉或不良信息处理:(010-)
论坛法律顾问:王进律师 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
运用stata进行时间序列分析
下载积分:1000
内容提示:运用stata进行时间序列分析
文档格式:PPT|
浏览次数:730|
上传日期: 13:49:53|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1000 积分
下载此文档
该用户还上传了这些文档
运用stata进行时间序列分析
关注微信公众号

我要回帖

更多关于 异方差检验 的文章

 

随机推荐