泰勒公式怎么推导证明

已解决问题
如何证明泰勒公式?请帮忙
跪求,急急!!!!!!
浏览次数:1501
用手机阿里扫一扫
最满意答案
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:&&f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!&(x-x.)^2,+f'''(x.)/3!&(x-x.)^3+&&+f(n)(x.)/n!&(x-x.)^n+Rn&&其中Rn=f(n+1)(&)/(n+1)!&(x-x.)^(n+1),这里&在x和x.之间,该余项称为拉格朗日型的余项。&&(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)&&证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+&(根据拉格朗日中值定理导出的有限增量定理有lim&Dx&0&f(x.+&Dx)-f(x.)=f'(x.)&Dx),其中误差&是在lim&Dx&0&即limx&x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:&&P(x)=A0+A1(x-x.)+A2(x-x.)^2+&&+An(x-x.)^n&&来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),&&,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、&&、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!&&P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!&(x-x.)^2+&&+f(n)(x.)/n!&(x-x.)^n.&&接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=&&=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(&1)/(n+1)(&1-x.)^n(注:(x.-x.)^(n+1)=0),这里&1在x和x.之间;继续使用柯西中值定理得Rn'(&1)-Rn'(x.)/(n+1)(&1-x.)^n-0=Rn''(&2)/n(n+1)(&2-x.)^(n-1)这里&2在&1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(&)/(n+1)!,这里&在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(&)/(n+1)!&(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。&&麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:&&f(x)=f(0)+f'(0)x+f''(0)/2!&x^2,+f'''(0)/3!&x^3+&&+f(n)(0)/n!&x^n+Rn&&其中Rn=f(n+1)(&x)/(n+1)!&x^(n+1),这里0&&&1。&&证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+&&+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:&&f(x)=f(0)+f'(0)x+f''(0)/2!&x^2,+f'''(0)/3!&x^3+&&+f(n)(0)/n!&x^n+f(n+1)(&)/(n+1)!&x^(n+1)&&由于&在0到x之间,故可写作&x,0&&&1。&&麦克劳林展开式的应用:&&1、展开三角函数y=sinx和y=cosx。&&解:根据导数表得:f(x)=sinx&,&f'(x)=cosx&,&f''(x)=-sinx&,&f'''(x)=-cosx&,&f(4)(x)=sinx&&&&于是得出了周期规律。分别算出f(0)=0,f'(0)=1,&f''(x)=0,&f'''(0)=-1,&f(4)=0&&&&最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-&&(这里就写成无穷级数的形式了。)&&类似地,可以展开y=cosx。&&2、计算近似值e=lim&x&&&(1+1/x)^x。&&解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:&&e^x&1+x+x^2/2!+x^3/3!+&&+x^n/n!&&当x=1时,e&1+1+1/2!+1/3!+&&+1/n!&&取n=10,即可算出近似值e&2.7182818。&&3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)&&证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。[编辑本段]泰勒展开式&&e的发现始于微分,当&h&逐渐接近零时,计算&之值,其结果无限接近一定值&2.71828...,这个定值就是&e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写&e&来命名此无理数.&&&计算对数函数&的导数,得&,当&a=e&时,&的导数为&,因而有理由使用以&e&为底的对数,这叫作自然对数.&&&若将指数函数&ex&作泰勒展开,则得&&&以&x=1&代入上式得&&&此级数收敛迅速,e&近似到小数点后&40&位的数值是&&&将指数函数&ex&扩大它的定义域到复数&z=x+yi&时,由&&&透过这个级数的计算,可得&&&由此,De&Moivre&定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i,&z2=x2+y2i,&&&另方面,&&&所以,&&&我们不仅可以证明&e&是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是&Hermite&在1873年得到的.&&&甲)差分.&&&考虑一个离散函数(即数列)&R,它在&n&所取的值&u(n)&记成&un,通常我们就把这个函数书成&或&(un).数列&u&的差分&还是一个数列,它在&n&所取的值以定义为&&&以后我们干脆就把&简记为&&&(例):数列&1,&4,&8,&7,&6,&-2,&...&的差分数列为&3,&4,&-1,&-1,&-8&...&&&注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.&&&差分算子的性质&&&(i)&[合称线性]&&&(ii)&(常数)&[差分方程根本定理]&&&(iii)&&&其中&,而&(n(k)&叫做排列数列.&&&(iv)&叫做自然等比数列.&&&(iv)'&一般的指数数列(几何数列)rn&之差分数列(即「导函数」)为&rn(r-1)&&&(乙).和分&&&给一个数列&(un).和分的问题就是要算和&.&怎么算呢&我们有下面重要的结果:&&&定理1&(差和分根本定理)&如果我们能够找到一个数列&(vn),使得&,则&&&和分也具有线性的性质:&&&甲)微分&&&给一个函数&f,若牛顿商(或差分商)&的极限&存在,则我们就称此极限值为&f&为点&x0&的导数,记为&f'(x0)&或&Df(x),亦即&&&若&f&在定义区域上每一点导数都存在,则称&f&为可导微函数.我们称&为&f&的导函数,而&叫做微分算子.&&&微分算子的性质:&&&(i)&[合称线性]&&&(ii)&(常数)&[差分方程根本定理]&&&(iii)&Dxn=nxn-1&&&(iv)&Dex=ex&&&(iv)'&一般的指数数列&ax&之导函数为&&&(乙)积分.&&&设&f&为定义在&[a,b]&上的函数,积分的问题就是要算阴影的面积.我们的办法是对&[a,b]&作分割:&&&;其次对每一小段&[xi-1,xi]&取一个样本点&;再求近似和&;最后再取极限&(让每一小段的长度都趋近于&0).&&&若这个极限值存在,我们就记为&的几何意义就是阴影的面积.&&&(事实上,连续性也「差不多」是积分存在的必要条件.)&&&积分算子也具有线性的性质:&&&定理2&若&f&为一连续函数,则&存在.(事实上,连续性也「差不多」是积分存在的必要条件.)&&&定理3&(微积分根本定理)&设&f&为定义在闭区间&[a,b]&上的连续函数,我们欲求积分&如果我们可以找到另一个函数&g,使得&g'=f,则&&&注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!&&&上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.&&&我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算&(un)&的和分及&f&的积分,只要去找另一个&(vn)&及&g&满足&,&g'=f&(这是差分及微分的问题),那么对&vn&及&g&代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是&以简御繁&的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.&&&甲)Taylor展开公式&&&这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数&f,我们要研究&f&的行为,但&f&本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数&g,使其跟&f&很「靠近」,那么我们就用&g&来取代&f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清&&&两个问题:即如何选取简单函数及逼近的尺度.&&&(一)&对于连续世界的情形,Taylor&展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到&n&阶都可导微的函数&f,我们要找一个&n&次多项函数&g,使其跟&f&在点&x0&具有&n&阶的「切近」,即&,答案就是&&&此式就叫做&f&在点&x0&的&n&阶&Taylor&展式.&&&g&在&x0&点附近跟&f&很靠近,于是我们就用&g&局部地来取代&f.从而用&g&来求得&f&的一些局部的定性行为.因此&Taylor&展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则&f可展成&Taylor&级数,而且这个&Taylor&级数就等于&f&自身.&&&值得注意的是,一阶&Taylor&展式的特殊情形,此时&g(x)=f(x0+f'(x0)(x-x0))&的图形正好是一条通过点&(x0,f(x0))&而且切于&f&的图形之直线.因此&f&在点&x0&的一阶&Taylor&展式的意义就是,我们用过点&(x0,f(x0))&的切线局部地来取代原来&f&曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.&&&利用&Talor&展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.&&&复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.&&&当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到&Fourier&级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier&级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)&&&注:取&x0=0&的特例,此时&Taylor&展式又叫做&Maclaurin&展式.不过只要会做特例的展开,欲求一般的&Taylor&展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对&x=0&点作&Taylor&展式.&&&(二)&对于离散的情形,Taylor&展开就是:&&&给一个数列&,我们要找一个&n&次多项式数列&(gt),使得&gt&与&ft&在&t=0&点具有&n&阶的「差近」.所谓在&0&点具有&n&阶差近是指:&&&答案是&此式就是离散情形的&Maclaurin&公式.&&&乙)分部积分公式与Abel分部和分公式的类推&&&(一)&分部积分公式:&&&设&u(x),v(x)&在&[a,b]&上连续,则&&&(二)&Abel分部和分公式:&&&设(un),(v)为两个数列,令&sn=u1+......+un,则&&&上面两个公式分别是莱布尼慈导微公式&D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式&的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.&&&(丁)复利与连续复利&(这也分别是离散与连续之间的类推)&&&(一)&复利的问题是这样的:有本金&y0,年利率&r,每年复利一次,要问&n&年后的本利和&yn=&显然这个数列满足差分方程&yn+1=yn(1+r)&&&根据(丙)之(二)得知&yn=y0(1+r)n&这就是复利的公式.&&&(二)&若考虑每年复利&m&次,则&t&年后的本利和应为&&&令&,就得到连续复利的概念,此时本利和为y(t)=y0ert&&&换句话说,连续复利时,t&时刻的本利和&y(t)=y0ert&就是微分方程&y'=ry&的解答.&&&由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.&&&(戊)Fubini&重和分定理与&Fubini&重积分定理(也是离散与连续之间的类推)&&&(一)&Fubini&重和分定理:给一个两重指标的数列&(ars),我们要从&r=1&到&m,s=1到&n,&对&(ars)&作和&,则这个和可以这样求得:光对&r&作和再对&s&作和(反过来亦然).亦即我们有&&&(二)Fubini&重积分定理:设&f(x,y)&为定义在&上之可积分函数,则&&&当然,变数再多几个也都一样.&&&(己)Lebesgue&积分的概念&&&(一)&离散的情形:给一个数列&(an),我们要估计和&,Lebesgue&的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.&&&(二)连续的情形:给一个函数&f,我们要定义曲线&y=f(x)&跟&X&轴从&a&到&b&所围出来的面积.&&Lebesgue&的想法是对&f&的影域&作分割:&&&函数值介&yi-1&到&yi&之间的&x&收集在一齐,令其为&,&于是&[a,b]&就相应分割成&,取样本点&,作近似和&&&让影域的分割加细,上述近似和的极限若存在的话,就叫做&f&在&[a,b]&上的&Lebesgue&积分.&&&泰勒公式的余项&&f(x)=f(a)&+&f'(a)(x-a)/1!&+&f''(a)(x-a)^2/2!&+&&&&+&f(n)(a)(x-a)^n/n!&+&Rn(x)&[其中f(n)是f的n阶导数]&&泰勒余项可以写成以下几种不同的形式:&&1.佩亚诺(Peano)余项:&&Rn(x)&=&o((x-a)^n)&&2.施勒米尔希-罗什(Schlomilch-Roche)余项:&&Rn(x)&=&f(n+1)(a+&(x-a))(1-&)^(n+1-p)(x-a)^(n+1)/(n!p)&&&[f(n+1)是f的n+1阶导数,&&(0,1)]&&3.拉格朗日(Lagrange)余项:&&Rn(x)&=&f(n+1)(a+&(x-a))(x-a)^(n+1)/(n+1)!&&[f(n+1)是f的n+1阶导数,&&(0,1)]&&4.柯西(Cauchy)余项:&&Rn(x)&=&f(n+1)(a+&(x-a))(1-&)^n&(x-a)^(n+1)/n!&&[f(n+1)是f的n+1阶导数,&&(0,1)]&&5.积分余项:&&Rn(x)&=&[f(n+1)(t)(x-t)^n在a到x上的积分]/n!&&[f(n+1)是f的n+1阶导数]
答案创立者
以企业身份回答&
正在进行的活动
生意经不允许发广告,违者直接删除
复制问题或回答,一经发现,拉黑7天
快速解决你的电商难题
店铺优化排查提升2倍流量
擅长&nbsp 店铺优化
您可能有同感的问题
扫一扫用手机阿里看生意经
问题排行榜
当前问题的答案已经被保护,只有知县(三级)以上的用户可以编辑!写下您的建议,管理员会及时与您联络!
server is okAn error occurred on the server when processing the URL. Please contact the system administrator.
If you are the system administrator please click
to find out more about this error.泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于
泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于0.
因为P(x)是假设的,是f(x)的近似值,当f(x)的可导阶数越高,P(x)的值越接近f(x),但总归有误差,误差就是Rn(x)Rn(x)的高阶导数并不都等于0,当f(x)在X0这点泰勒展开时,有Rn(x)在X0这点的0,1,2……n阶导数等于0(前提是f(x)存在n+1阶导数),你应该注意到Rn(x.)函数中有一个(x-x0)^的n+1次方这个因子,所以在在X0这点的0,1,2……n阶导数等于0,但n+1阶导数不等于0
我有更好的回答:
剩余:2000字
与《泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于》相关的作业问题
把向量和梯度,散度都展开成列形式,运算过程大致按照内积和导数运算规则.
如果 x 和 y 是实数且 y > 0,那么 |x| < y 等价于 -y < x < y,这里不需要已知 x 的符号.从 |an-a| < (b-a)/2 得到 -(b-a)/2 < an-a < (b-a)/2,用右边一半就得到 an < (b+a)/2从 |bn-b| < (b-a)/2 得到 -(b-a)/2
α=∠XMD β=∠XMA γ=∠A好诡异的证明
在道尔顿分压定律中,每种气体占的体积都等于总体积,并不是混合气体各组分的体积和等于总体积..你理解错了.
原来的和式最后一项是1/[(2^k)-1],现在和式的最后一项是1/[2^(k+1) -1],增加的项就是从1/2^k开始,分母依次加1,直至1/[2^(k+1) -1】;比如 n=2时,最后一项是1/3;n=3时,最后一项是1/7,增加的项有1/4+1/5+1/6+1/7,以此类推.
AX · XD = PX · XQ 是相交弦定理PX · XQ =a&#178; - x&#178;是由下边得来的根据x = XM (=YM),a = PM(=QM)PX · XQ=(PM-XM)*(XM+MQ)=(a-x)*(a+x)=a&#178; - x&#178;
是可以的,只要你写的对,一般老师多是让的
可以的 再问: 请给我证明过程 再答: 积分中值定理:   若函数 f(x) 在 闭区间 [a, b]上连续,,则在积分区间 [a, b]上至少存在一个点 ξ,使下式成立   ∫ 下限a上限b f(x)dx=f(ξ)(b-a) ( a≤ ξ≤ b)   证明:   因为 f(x) 是闭区间 [a,b]上的连续函数, 设
首先要修正你的问题噢,1—2(sinx/2)^2>1—2*(x^2/4),应该是由于(sinx/2)^2
& & & α只是一个0无穷小量,也只有极限定义,生硬地规定它在0的值没有任何必要性,因为它在0点处不必没有定义,也不用补充定义.导数是一个极限,在导数定义里不必强加这一条.& & & 这书是谁写的,这种定义的东西都能硬塞一条&规定&那数学
注意平行线、内错角、平角和角之间的代换.
关于这个数学证明题 首先要明白 这些题的理由依据多是一些数学的公式于理论证明题通常是写证明二字如 已知A‖B f与g为同位角且分别在AB上 证明f=g证明:f=g(两直线平行,同位角相等)当然这是十分简单的例子
A有r列线性无关适当调整未知量的顺序,即交换A的列,不影响解的情况 再问: 可是后面又将转换后的矩阵直接作为系数代入线性方程,这样不是和原来的方程组的未知数位置不一样了?不知道我表达清楚没有 再答: 比如:设y1=x2,y2=x1其余yi=xi那么系数矩阵的1,2列交换得到解后再将x1,x2交换回来就是原方程组的解再问
因为这两条线段是两个等高三角形的底边.晚上好.
∵BE=CF(已知)∴BE+EC=CF+EC即BC=EF在△ABC和△DEF中AB=DE(已知)AC=DF(已知)BC=EF(已证)∴△ABC≌△DEF(SSS)∴∠B=∠1(全等三角形对应角相等)
解题思路: 证明过程中的每一步推理,都要有根据,这些根据可以是已知条件,也可以是学过的公里、定力和定义解题过程:
设a(n+1),an是数列中任意相邻两项,则从第二项起,后项与前项的比是同一个常数的数列叫等比数列(大前提)因为a(n+1)/an=cq^(n+1)/cq^n=q(常数)(小前提)所以{an}是等比数列.(结论)
an+1=cq^(n+1)an=cq^(n)an+1/an=q 再问: 能把过程写的通俗具体一点儿吗、主要是分析证明过程中的三段论、因为现在我们正在学习推理与证明。 我还是不懂、、谢了^_^ 再答: an+1=c*q^(n+1)=c*q*q^n an=c*q^n(两个式子相除) 约掉c*q^n不就只有q了 an等比只要
在某个区间内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增.∵在R上,f′(x)=3x2+1>0,∴函数f(x)=x3+x在(-∞,+∞)上是增函数.在不等式证明中的妙用泰勒公式_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
在不等式证明中的妙用泰勒公式
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 常用的泰勒展开公式 的文章

 

随机推荐