高等数学数列的极限极限问题。如图。为什么设ε< 1。就可以让N=该值啊

该定义常称为数列极限的 ε—N定义.

对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。

定理1:如果数列{Xn}收敛,则其极限是唯一的。

定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。


战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭” 也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。

三国时的刘徽提出的“割圆求周”的方法。他把圆周分成三等分、六等分、十二等分、二十四等分、··· 这样继续分割下去,所得多边形的周长就无限接近于圆的周长。

设为一,如果存在a,对于任意给定的ε (不论它多么小),总存在N,使得当n>N时,不等式|Xn-a|<ε 都成立,那么就称常数a是数列的,或者称数列收敛于a,即为Xn→a(n→∞)。 

不等式|Xn-a|<ε刻划了Xn与a的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明Xn与a可以接近到任何程度。然而,尽管ε有其任意性,但一经给出正整数N,ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数,那么ε/2,ε的平方等等同样也是任意小的,因此定义中不等式|Xn-a|<ε中的 ε可用ε/2,ε的平方等来代替。同时,正由于ε是任意小正数,可限定ε小于一个确定的正数.另外,定义1中的Xn-a|<ε也可改写成Xn-a|≦ε

一般说,N随ε的变小而变大,由此常把N写作N(ε),来强调N是依赖于ε的;但这并不意味着N是由ε所唯一确定的,因为对给定的 ,比如当N=100时,能使得当n>N时有xn-a|<ε,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成n≧N.

当n>N时,所有的点xn都落在(a-ε,a+ε)内,只有有限个(至多只有n个)在其外。

互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。

我要回帖

更多关于 高等数学数列的极限 的文章

 

随机推荐