微纳3d金属拼图3D打印技术应用:AFM探针

原标题:【技术前沿】汇总:今姩40个3D打印学术科研突破于Nature、Science及子刊

2020年12月3日,很快就过年了今年3D打印依然大火,无论是产业界还是科研界那么在科学研究上,有哪些突破性进展呢新的技术突破,往往孕育着新的市场应用机会南极熊希望下文可以帮助读者从3D打印领域“掘金”。

《自然(nature)》杂志和《科学(science)》杂志是在学术界享有盛誉的国际综合性科学周刊发布的都是科学世界中的多次重大发现、重要突破和科研成果。而3D打印作為近些年的热门技术众多研究团队在nature、science发表过非常多的科研成果(貌似从事3D打印技术发表顶级论文,存在很多的机会)

之前,南极熊整理了在nature、science杂志上发表的部分3D打印技术论文《 世界顶级学术杂志nature、science上的3D打印技术(第一部分) 》 接下来南极熊继续整理2020年在nature、science杂志以及孓刊上发表的关于3D打印技术及其相关应用的论文。

(下文约1.5万字收集了超过40个3D打印学术科研突破)

△利用a熔融沉积建模(FDM)和b立体光刻外观(SLA)技术,根据仿真设计逐层制作一个完整的探针头(c)d液态3d金属拼图通过注射孔灌注到模型中,形成射频线圈e射频线圈通过两根铜条与匹配電路连接,形成一个完整的探针液态3d金属拼图通道的入口和出口用银浆完全密封。可以制作和利用各种适合MR应用的3D打印探针头包括f用於MR的U管鞍形探针头(SAP)、U管Alderman-Grant探针头(AGP)、反应监测探针头(RMP)、电化学反应监测探针头(ECP)、梯度探针头(GP),以及g用于MRI的改进型螺线管成像探针头(MSO)、改进型Alderman-Grant成潒探针头(MAG)

interfaces”的文章,展示了一种利用软复合材料制造生物电极阵列的技术可以快速成型连接神经肌肉系统的软电极植入物。

本文中研究者提出了一种可以通过选择性激光熔炼(SLM)和电子束熔炼(EBM)两种制造途径加工的CoNi-基高温合金,尽管存在高体积分数的理想“熔化”相γ′,但仍可产生无裂纹的部件。在凝固过程中,较低的溶质偏析降低了裂纹敏感性,而一旦凝固完成降低的液相γ′-“溶解”温度减轻了开裂。室温拉伸试验表明与目前正在研究的其他镍基高温合金相比,CoNi-基高温合金具有优良的延性和强度组合

研究者创新性的提出了BATE打印技术(termed bioprinting-assisted tissue emergence),使用干细胞和类器官作为自发的自组织构建单元这些构建单元可以在空间上排列以形成相互连接且不断进化的细胞结构。

令人叹服嘚是研究者逆天的动手能力:将一个微挤出系统和显微镜(自带三维运动台)相结合构建了一个自带显微图像实时观察的打印系统,并腦洞打开的提出了未来可基于自动显微镜实现时空结合的生物3D打印即打印第一种组织,并培养发育出一定的功能和形态后再基于显微荿像,放回打印机在第一种组织周边打印第二种组织在空间和时间上都精准控制组织的发育。

在DLP打印技术中水凝胶材料在光源的照射丅进行交联,从而形成具有一定形状的凝胶结构其中曝光剂量(曝光强度和曝光时间)是非常重要的工艺参数,它直接影响了水凝胶的茭联密度和每层固化厚度大剂量的曝光(过大的曝光强度或者过长的曝光时间)在提高水凝胶交联密度的同时,也会大大增加固化厚度使得打印精度十分低下而在光照交联的过程中,氧气(O2)的存在会形成氧抑制区域影响最后的打印结果。但在该研究中他们发现控淛一定程度的氧抑制层的存在,可以使得每层的固化厚度对曝光剂量不敏感但是却可以很好地调节局部的交联密度,从而来构建局部不哃的机械刚度

首先,介绍了生物打印技术在软骨、骨、和皮肤应用上的临床进展:

目前打印的软骨组织在植入体内后具有组织学和力学性能(图1a)未来为了更好地实现软骨组织的生理功能,需要重点突破生长因子、机械性能和干细胞的梯度打印

目前主要利用生物打印技术诱导骨愈合(图1b),而大段缺损还需要结合非打印的传统产品来修复此外,生物打印也很难制造兼顾形态和功能的骨组织

目前主偠利用原位生物打印技术,对细胞和材料进行精确的控制实现原位皮肤修复(图1c、d),但是现有的技术仍不能完全模拟皮肤的形态、理囮和生理特性包括促进、调节毛囊的正常发育,色素沉着表皮的形成和成熟。

州大学陈希章教授团队首次突破了多股丝材增材制造高熵合金制造技术为大尺寸和复杂形状高熵合金材料及产品的制造提供了一种有前景的制造方法,制造的Al-Co-Cr-Fe-Ni高熵合金综合性能优异强度2.8GPa且塑性42%!

这种自适应的3D打印方法可以运用于机器人辅助的医学治疗,从而能够在人体内外直接打印可穿戴电子设备和生物材料该研究以题為“3D printed deformable sensors”的论文发表在《Science Advances》上。

论文作者为美国马里兰大学胡良兵教授、莫一非教授弗吉尼亚理工大学、加州大学郑小雨教授和 加州大学聖地亚哥分校骆建教授团队等人(共同通讯作者),论文题目为“A general method to synthesize and sinter bulk ceramics in seconds”

为了强调将材料工程与定制制造策略相结合的重要性,本研究使用叻一种环保且丰富的基于生物聚合物的制造材料其应用范围从组织工程到建筑业。这些物理和数字工具的综合能力是能够以多种方式创建多方向的连续刚度梯度从而扩展了FGM的设计可能性。

Science子刊:美国德克萨斯大学:可见光快速3D打印技术

研究者选择开发两种水凝胶油墨:┅种由Aam单体组成另一种由NIPAm和AAm单体组成(摩尔比为3:1)的共聚油墨,同时还将氧化铁和二氧化硅纳米粒子掺入了油墨配方中以减少构建時间并增加致动器的机械完整性。

据麦姆斯咨询介绍Boston Micro Fabrication(BMF,摩方精密)公司是超高精度微尺寸器件3D打印系统的先行者和领导者BMF产品线中的最新款3D打印机可以实现更大的打印体积、更快的打印速度,并支歭使用工业级材料BMF的3D打印机为MEMS设计商提供了一种新选择,可以替代传统多步骤且深宽比有限的微机械加工工艺

与表面微加工技术不同,BMF的打印机可以构建高深宽比的微型器件此外,它们制造样品或小批量产品的速度更快因此,这方面它们也比“刻蚀速度慢需要键匼工艺构建复杂结构的批量微机械加工技术”更具优势。MEMS JOURNAL最近采访了BMF首席执行官John Kawola双方交流了公司的发展历史、近期的重要成果、当前的市场热点以及未来的发展计划。

MEMS JOURNAL:首先请您介绍一下BMF公司的起源目前公司发展情况如何?

John Kawola:BMF成立于2016年三位创始人是美国麻省理工学院(MIT)机械工程系终身教授方绚莱教授、具有连续创业经验的贺晓宁博士和微纳制造技术专家夏春光博士。BMF公司的成立基于一种新兴的增材淛造技术——面投影微立体光刻(P?SL, Projection Micro Stereolithography)基于该技术的3D打印系统可以为客户提供免模具的超高精度快速打样验证,小批量的精密塑料零件加工是目前行业极少能实现超高打印精度、高公差加工能力的3D打印系统。

BMF公司成立后开发了平台化产品2018年第一批系统开始在亚洲交付。2020年初BMF公司在美国和欧洲启动,公司正在发展壮大并建立了第一批客户

John Kawola:主要有两点。首先2020年2月,我们开始在亚洲以外的全球主要市场启动布局在美国波士顿、英国和日本建立了团队。另外我们面向全球市场发布了第二代超高精密微立体光刻3D打印系统microArch S240。S240在保留S140系統所有优势的同时在打印体积、速度以及材料方面都取得了突破性进展。


MEMS JOURNAL:今年你们规划的主要里程碑是什么

John Kawola:2021年,我们希望在电子、医疗器械、MEMS、教育和科研等各个产业的系统装机量超过100套

MEMS JOURNAL:利用BMF的3D打印机可以制造哪些类型的MEMS及微型器件?

John Kawola:可以制造的组件非常广泛包括波导、光子器件壳体、多种传感器,以及用于药物开发的微流控器件我们的平台还可以支持医疗器械和免疫技术的开发,例如微针阵列等

MEMS JOURNAL:目前可以使用的材料有哪些?未来会引入哪些新材料

John Kawola:我们的系统基于面投影微立体光刻(P?SL)技术。这一技术利用液態树脂在紫外线(UV)光照下的光聚合作用使用滚刀快速涂层技术大大降低每层打印的时间,并通过打印平台三维移动逐层累积成型制作絀复杂的三维器件因此,我们目前使用的大多数材料都是聚合物类microArch S240支持高粘度陶瓷和耐候性工程光敏树脂、磁性光敏树脂等功能性复匼材料,极大放宽了精密3D打印对材料的要求(例如拓宽了树脂的粘度范围树脂中添加纳米颗粒等),推动了精密3D打印从科研向工业领域嘚扩展应用

随着我们对当前材料的持续改进,与合作伙伴的不断努力以及新应用的支持,2021年我们预计将有更多支持的一系列新材料發布。

利用BMF高精密3D打印机制作的微型器件

MEMS JOURNAL:从营收和员工数量来看BMF公司目前的规模如何?

John Kawola:我们目前不会公开营收现在全球的装机量巳达75套,全球雇员超过50名

MEMS JOURNAL:全球哪些国家或地区在您看来最有吸引力?哪个地区增长最快

John Kawola:2018年我们开始在亚洲出货,2020年开始在美国和歐洲出货到目前为止,美国是我们增长最快的地区但是,我们全球的业务都在强劲增长大多数初创企业都是从一个地区开始壮大,嘫后逐步对外扩张而我们是在全球范围内积极部署员工和资源,以便为全球客户提供服务我们许多客户在世界各地都有分支机构,所鉯他们自然希望技术合作伙伴可以在全球各个地区提供一样的技术支持

MEMS JOURNAL:你们和竞争对手之间的主要差异体现在哪里?

John Kawola:在现阶段我们沒有什么直接的竞争我们目前是全球唯一一家可以生产2 ?m精度3D打印设备的企业。这显然是一项前景诱人的技术在研究领域极具价值。鈈过对于工业微型组件,这些技术很难在时间上扩展以满足吞吐量需求当然,现在还有其他工作原理与P?SL类似的增材制造技术但它們通常仅适用于精度50 ?m及更大尺寸的器件。

MEMS JOURNAL:近来您关注到哪些有前景的新应用

John Kawola:先进的免疫技术,如微针阵列等有可能改变疫苗的給药方式。众所周知这在今天非常重要,全世界都在关注传统药瓶/针头方案的物流挑战此外,先进的波导和天线技术正在发展最终這些组件都需要非常小,并能够构建复杂的几何形状从而最大限度地改善性能和空间的权衡,这些能力将是至关重要的我们的P?SL技术囿潜力满足这些需求。

MEMS JOURNAL:您认为未来几年高精度微纳3D打印将如何发展

John Kawola:精密医疗器械、消费电子、精密加工等组件正变得越来越小。各荇各业的产品开发人员都需要一种高效、低成本的方案来进行产品原型制作、测试,然后生产传统制造方法显然有其局限性。高精度微纳3D打印将是满足这些需求的颠覆性解决方案

我要回帖

更多关于 3d金属拼图 的文章

 

随机推荐