酵母菌的破碎细胞(细胞器教学设计完整)还能酿酒...

2012届高考生物必修1ATP的主要来源――细胞呼吸第一轮复习题及答案
您现在的位置:&&>>&&>>&&>>&&>>&&>>&正文
2012届高考生物必修1ATP的主要来源――细胞呼吸第一轮复习题及答案
作者:佚名 资料来源:网络 点击数: &&&
2012届高考生物必修1ATP的主要来源――细胞呼吸第一轮复习题及答案
本资料为WORD文档,请点击下载地址下载
文 章来源莲山课件 w ww.5 y kj.Co m 2012届高考生物一轮复习必修①& 第三单元& 第二讲& ATP的主要来源――细胞呼吸课时跟踪检测(限时:30分钟 满分:100分)一、(每小题4分,共48分)1.细胞呼吸对生命活动意义重大,下面关于细胞呼吸的叙述正确的是(  )A.细胞呼吸必须有水和氧气的参与才能释放储存在有机物中的能量B.有叶绿体的细胞叶绿体可以自行合成ATP,因此不需要细胞呼吸提供能量C.动物细胞呼吸停止便不能合成ATP,细胞代谢就此终结D.线粒体是有氧呼吸的主要场所,没有线粒体的细胞只能进行无氧呼吸解析:细胞呼吸包括无氧呼吸和有氧呼吸,无氧呼吸不需要氧气;叶绿体产生的ATP只用于暗反应C3的还原,所以其他生命活动仍需呼吸作用于提供ATP。有些原核生物虽然没有线粒体,但是也能进行有氧呼吸。答案:C2.巴斯德发现,利用酵母菌酿酒的时候,如果发酵容器中存在O2,会导致酒精产生停止,这就是所谓的巴斯德效应。直接决定“巴斯德效应”发生与否的反应及其场所是(  )A.酒精+O2D→丙酮酸,细胞质基质B.丙酮酸+O2D→CO2,线粒体基质C.[H]+O2D→H2O,线粒体内膜D.H2OD→O2+[H],类囊体薄膜解析:“巴斯德效应”的发生是因为发酵容器中存在O2并参与有氧呼吸过程,导致酒精产生停止。而在有氧呼吸过程的第三阶段有O2参与,并与[H]结合产生H2O,同时释放大量能量。答案:C3.(;海门质检)下列生物的反应式错误的是(  )A.蓝藻进行光合作用的反应式:CO2+H2ODD→光能叶绿体(CH2O)+O2B.植物吸收无机盐时消耗ATP的反应式:ATPDD→酶ADP+Pi+能量C.酵母菌进行发酵的反应式:C6H12O6DD→酶2C2H5OH+2CO2+能量D.马铃薯块茎进行无氧呼吸的反应式:C6H12O6DD→酶2C3H6O3+能量解析:蓝藻是原核生物,能够进行光合作用,但是没有叶绿体。酵母菌进行无氧呼吸产生酒精和二氧化碳,马铃薯块茎进行无氧呼吸产生乳酸。答案:A4.(;广州模拟)一科学家比较了两种细菌在其自然栖息地的繁殖速率:一种“居住”在羊的口腔中,一种“居住”在羊的瘤胃中(胃的一部分)。她发现“居住”在羊口腔中的细菌繁殖速率比在瘤胃中的快得多。下面哪种说法能很好地解释这一观察结果(  )A.它们是光能自养细菌,因此在瘤胃中的细菌不能得到足够的光来进行光合作用B.在瘤胃中的细菌处于缺氧环境中,而厌氧呼吸释放的能量没有需氧呼吸多C.羊口腔比瘤胃里面温暖,所以细菌呼吸作用更旺盛,产生的能量更多D.细菌在羊口腔中发生了厌氧呼吸,比需氧呼吸产生的能量更多解析:细菌繁殖要消耗能量,羊的瘤胃内是一个无氧的环境,细菌进行厌氧呼吸,而口腔中有氧,细菌可进行有氧呼吸,厌氧呼吸释放的能量没有需氧呼吸多。答案:B5.如图为真核细胞呼吸作用的部分过程,据图分析下列叙述错误的是(  )A.可以在细胞质基质中发生的是①③④B.在线粒体中发生的过程是②和③C.④过程比③过程释放的能量多D.人在剧烈运动时产生的CO2只来源于②过程解析:图中①是ATP的合成,可发生于细胞质基质和线粒体中,②是有氧呼吸,③④表示无氧呼吸,④过程较③过程氧化分解彻底,释放能量多,人体细胞只有有氧呼吸②产生CO2。答案:B6.下图表示在一个固定容积的培养液中,一定时间内酵母菌相关指标与氧气浓度的关系,不正确的有(  )&解析:酵母菌是兼性厌氧型微生物,所以酵母菌细胞呼吸产生的CO2与氧气浓度的关系如图A所示;酵母菌在有氧的条件下大量繁殖,但O2浓度达到一定程度时,繁殖速率不再增加;酵母菌无氧呼吸产生酒精和二氧化碳,在有氧的条件下无氧呼吸受到抑制,所以产生的酒精量与O2浓度的关系如图C所示;酵母菌有氧呼吸、无氧呼吸均能产生ATP。答案:D7.(;漳州模拟)从内地到西藏旅游,到达西藏后很多人会出现乏力现象,原因是在缺氧的环境下细胞呼吸作用的方式发生了改变,下列相关叙述不正确的是(  )A.无氧呼吸增强,导致内环境乳酸增多、pH略有下降B.无氧呼吸增强,导致细胞释放的能量减少C.细胞质基质产生的能量增强,线粒体产生的能量减少D.由于氧气缺乏,导致第一阶段产生的丙酮酸减少,影响了第二、三阶段的进行解析:无氧呼吸是在细胞质基质内进行的,缺氧时无氧呼吸增强,细胞质基质产生的能量增多;有氧呼吸第一阶段产生丙酮酸的多少与氧气无关,影响第三阶段进行的因素是氧气含量。答案:D8.提取鼠肝脏细胞的线粒体为实验材料,向盛有线粒体的试管中注入丙酮酸时,测得氧的消耗量较大;当注入葡萄糖时,测得氧的消耗量几乎为零;同时注入细胞质基质和葡萄糖时,氧消耗量又较大。对上述实验结果的解释错误的是(  )A.线粒体内进行的是丙酮酸彻底分解和消耗氧气生成水的过程B.在线粒体内不能完成葡萄糖的酵解,而能完成丙酮酸的分解过程C.葡萄糖分解成丙酮酸是在细胞质基质中完成的,不需要消耗氧气D.有氧呼吸中,水的参与和生成都是在细胞质基质中进行的解析:细胞质基质进行的是有氧呼吸第一阶段葡萄糖分解为丙酮酸。线粒体内进行的是有氧呼吸第二阶段和第三阶段,水参与第二阶段的化学反应,而水的生成则发生在第三阶段。答案:D9.(;厦门质检)如图为某同学构建的在晴朗白天植物的有氧呼吸过程图,下列说法正确的是(  )&A.催化2→3的酶存在于线粒体内膜上B.产生的8主要用于合成ATPC.6部分来自叶绿体D.3全部释放到大气中解析:从图中可判断1~8分别是葡萄糖、丙酮酸、CO2、H2O、[H]、O2、H2O、能量。丙酮酸产生CO2,属于有氧呼吸的第二阶段,在线粒体的基质中进行;有氧呼吸产生的能量仅有40%储存在ATP中,其余以热能的形式散失;在晴朗的白天,植物光合作用很强,不仅要从外界吸收CO2,而且植物有氧呼吸产生的CO2也通过扩散作用进入叶绿体,参与光合作用。答案:C10.(;烟台质检)人体内氢随化合物在生物体内代谢转移的过程如图所示。下列分析中合理的是(  )&A.①过程发生在核糖体中,水中的H只来自于―NH2B.在缺氧的情况下,③过程中不会发生脱氢反应C.M物质是丙酮酸,④过程不会发生在线粒体中D.在氧气充足的情况下,②③过程发生于线粒体中解析:氨基酸脱水缩合形成蛋白质是在核糖体上完成的,水中的H来自于氨基和羧基。在缺氧的情况下,无氧呼吸也要在细胞质基质进行③过程,产生丙酮酸,也会发生脱氢反应,进一步在细胞质基质产生乳酸。答案:C11.呼吸商(RQ=放出的CO2量/吸收的O2量)可作为描述细胞呼吸过程中氧气供应状态的一种指标。右图是酵母菌氧化分解葡萄糖过程中氧分压与呼吸商的关系,以下叙述正确的是(  )A.呼吸商越大,细胞有氧呼吸越强,无氧呼吸越弱B.b点有氧呼吸强度大于a点C.为延长水果的保存时间,最好将氧分压调至c点D.c点以后细胞呼吸强度不随氧分压变化而变化解析:只进行有氧呼吸时,呼吸商为1,若同时进行有氧呼吸和无氧呼吸,呼吸商大于1,且无氧呼吸比重越大,呼吸商越大。b点有氧呼吸大于a点。c点时,只进行有氧呼吸,有机物消耗量多,不利于水果保存。c点以后呼吸商恒为1,并不表明呼吸强度不再变化。答案:B12.按下表设计进行实验。分组后,在相同的适宜条件下培养8~10小时,并对实验结果进行分析。下列叙述正确的是(  )实验材料&取样&处理&分组&培养液&供氧情况适宜浓度酵母菌液&50 mL&破碎细胞(细胞器完整)&甲&25 mL&75 mL&无氧&&&乙&25 mL&75 mL&通氧&50 mL&未处理&丙&25 mL&75 mL&无氧&&&丁&25 mL&75 mL&通氧A.甲组不产生CO2而乙组产生B.甲组的酒精产量与丙组相同C.丁组能量转化与丙组相同D.丁组的氧气消耗量大于乙组解析:细胞破碎后细胞质基质丧失,细胞器完整,无氧条件下,由于没有细胞质基质,无法进行无氧呼吸,通氧后,葡萄糖无法分解为丙酮酸,因线粒体不能利用葡萄糖,酵母菌也无法进行有氧呼吸;细胞未处理时,无氧条件下进行无氧呼吸,通氧时进行有氧呼吸,有氧呼吸能量转化率比无氧呼吸能量转化率大,有氧呼吸消耗O2,无氧呼吸不消耗O2。答案:D二、非(共52分)13.(16分)生物体内葡萄糖分解代谢过程的图解如下:&据图回答下列问题:(1)图中A是________,其产生的部位是________。(2)反应①②③④中,必须在有氧条件下进行的是______,可在人体细胞中进行的是________。(3)苹果贮藏久了,会有酒味产生,其原因是发生了图中________过程;而马铃薯块茎贮藏久了却没有酒味产生,其原因是马铃薯块茎在无氧条件下进行了图中________过程。(4)粮食贮藏过程中有时会发生粮堆湿度增大现象,这是因为________________________。(5)如果有氧呼吸和无氧呼吸产生等量的CO2,所消耗的葡萄糖之比为________。解析:图中①是细胞呼吸第一阶段,②是有氧呼吸第二、三阶段,③、④分别是两种无氧呼吸类型。图中A是丙酮酸。人体细胞无氧呼吸的产物是乳酸,不会产生酒精。答案:(1)丙酮酸 细胞质基质(2)② ①②④ (3)①③ ①④(4)种子在有氧呼吸过程中产生了水(5)1∶314.(15分)(;福州模拟)某同学想通过实验来探究某种植物呼吸作用的最适温度,以下是他的实验方案:(1)①选取相同的豌豆幼苗若干株,等分为10组;②预先将豌豆幼苗放在25 ℃下,培养4天,使得所有材料都保持相同的生理状态,其相对呼吸速率为10;③将培养后的豌豆幼苗再放到不同温度的____________环境中培养3 h后,每隔一小时测定一次相对呼吸速率;④将测定的结果绘制成曲线图,结果如图所示(最初3小时虚线部分为推测值):
&(2)实验至7 h,发现有一组豌豆幼苗全部死亡,则该组实验温度最可能是________,原因是__________________。(3)从上图分析,最接近豌豆幼苗呼吸作用最适温度的是________。(4)从各条曲线的情况综合分析,可以看出,要确定呼吸作用的最适温度,不仅要考虑该温度下的呼吸作用速率,还要考虑____________________________因素,__________________的温度才能称为最适温度。(5)与预处理步骤②的目的(排除最初生理状态差异的干扰)最接近的是________。A.测定苹果中的还原糖之前,将苹果榨成苹果汁B.“半叶法”测定光合作用前,将植物饥饿12 hC.探究生长素类似物促进插条生根的最适浓度正式实验前,进行预实验D.标志重捕法估计动物种群密度时,将第一次捕捉到的动物做上标记解析:探究呼吸作用的最适温度可采用梯度法,即将变量(温度)设计为等差数列,分别作用于实验对象,然后观察实验对象对此做出的反应,同时实验时应排除无关变量的影响,包括生长状况、光照、时间等。实验结果的分析是实验题的重要一环。本题中,根据对曲线的对比分析,可以确定最适温度,以及不同温度条件下可能出现的结果及引起该结果的原因;预处理步骤②的目的是排除生理状态不同对实验结果的影响,与此最接近的是B,排除机体内原有淀粉对实验结果的影响。答案:(1)③无光 (2)55 ℃ 高温使酶失活 (3)35 ℃ (4)时间 能长期维持最快呼吸速率 (5)B15.(21分)早春季节,农民在水稻播种之前要进行催芽,即先用温水将水稻种子浸泡几小时(非恒温,让其自然变凉),再堆放在一起,并用塑料薄膜覆盖好。在种子萌发过程中要常掀开薄膜,并经常进行翻种。请根据上面材料回答问题:(1)必须用一定温度的水浸泡的目的是_______________________________________。(2)经常翻种的目的是为了提供氧气和散热,这是防止_________________________造成烂芽和烂根。(3)为了探究种子萌发时所进行的细胞呼吸类型,请据所给的材料和用具设计实验:Ⅰ.实验原理:种子萌发过程中,如只进行有氧呼吸则吸收氧气量和CO2释放量相等;如果进行无氧呼吸则只释放CO2。Ⅱ.实验材料和用具:萌发的水稻种子、带橡皮塞的玻璃罩2只、100 mL的烧杯4个、2根弯曲的其中带有红色液滴的刻度玻璃管、NaOH溶液、蒸馏水、凡士林。Ⅲ.实验方法:按照装置一图将实验材料和用具装好。如想得到预期的实验结论,必须同时设计另一组实验装置即装置二,请指出应如何设计。(在方框内绘出装置二的图示并做好相应标注)&Ⅳ.完成如下表格,预测实验可能出现的现象及结论。(请描述装置一和二中液滴移动状况)实验现象&结论一左移,二不移动&①________________②______________&只进行无氧呼吸③______________&既进行有氧呼吸,也进行无氧呼吸
解析:(1)酶在适宜的温度下活性较高,温水浸种可促进种子萌发。(2)在种子催芽过程中,经常翻动种子可以散热,并且提高氧浓度,防止无氧呼吸产生的酒精造成烂种。(3)装置一可测出萌发种子呼吸是否消耗氧气,但既有有氧呼吸又有无氧呼吸时,装置一的变化无法区分,无氧呼吸的特点是不消耗氧气,产生二氧化碳,而无氧呼吸可以使装置中气体体积增大,故可再设计一装置用蒸馏水替代NaOH溶液,用于测定无氧呼吸是否存在。答案:(1)提高温度,增强酶的活性(2)无氧呼吸产生酒精和过多热量(3)Ⅲ.提示:装置二与装置一相同,只是将NaOH溶液换成蒸馏水,图略Ⅳ.①只进行有氧呼吸 ②一不移动,二右移 ③一左移,二右移文 章来源莲山课件 w ww.5 y kj.Co m
上一个试题: 下一个试题:
? ? ? ? ? ? ? ? ? ?当前位置:
>>>将酵母菌培养液进行离心处理。把沉淀的酵母菌破碎后,再次离心处..
将酵母菌培养液进行离心处理。把沉淀的酵母菌破碎后,再次离心处理,得只含有酵母菌细胞质基质的上清液和只含有酵母菌细胞器沉淀物。在3支试管甲乙丙中分别加入等量的上清液、沉淀物、酵母菌培养液,同时分别滴入等量、等浓度的葡萄糖溶液。经过一段时间后,能产生CO2的是
A.甲B.丙C.甲和丙D.丙和乙
题型:单选题难度:中档来源:0115
马上分享给同学
据魔方格专家权威分析,试题“将酵母菌培养液进行离心处理。把沉淀的酵母菌破碎后,再次离心处..”主要考查你对&&呼吸作用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
呼吸作用:1、概念:生物的生命活动都需要消耗能量,这些能量来自生物体内糖类、脂类和蛋白质等有机物的氧化分解。生物体内的有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其他产物,并且释放出能量的总过程,叫做呼吸作用(又叫生物氧化)。(1)呼吸作用是一种酶促氧化反应。虽名为氧化反应,不论有无氧气参与,都可称作呼吸作用(这是因为在化学上,有电子转移的反应过程,皆可称为氧化)。有氧气参与时的呼吸作用,称之为有氧呼吸;没氧气参与的反应,则称为无氧呼吸。同样多的有机化合物,进行无氧呼吸时,其产生的能量,比进行有氧呼吸时要少。有氧呼吸与无氧呼吸是细胞内不同的反应,与生物体没直接关系。即使是呼吸氧气的生物,其细胞内,也可以进行无氧呼吸。(2)呼吸作用的目的,是透过释放食物里之能量,以制造三磷酸腺苷(ATP),即细胞最主要的直接能量供应者。呼吸作用的过程,可以比拟为氢与氧的燃烧,但两者间最大分别是:呼吸作用透过一连串的反应步骤,一步步使食物中的能量放出,而非像燃烧般的一次性释放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂质的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透过数个步骤,将能量转移到还原性氢(化合价为+1的氢)中。最后经过一连串的电子传递链,氢被氧化生成水;原本贮存在其中的能量,则转移到ATP分子上,供生命活动使用。植物呼吸作用过程:有机物(储存能量)+氧(通过线粒体)→二氧化碳+水+能量(3)呼吸速率:又称呼吸强度。指在一定温度下,单位重量的活细胞(组织)在单位时间内吸收氧或释放二氧化碳的量,通常以“mg(μl)/(h?g)”为单位,表示每克活组织(鲜重、干重、含氮量等)在每小时内消耗氧或释放二氧化碳的毫克数(或微开数)。呼吸速率的大小可反映某生物体代谢活动的强弱。呼吸作用是由一系列酶催化的化学反应,所以温度对呼吸作用有很大影响。还有水分、氧气、二氧化碳等也是影响呼吸速率的条件。(4)植物呼吸作用原理的应用:粮食储存;低温保存蔬菜水果:通过增加二氧化碳的含量可以抑制储存蔬菜水果等的呼吸作用;充氮气也可以降低氧气的浓度,抑制呼吸作用。农田松土;农田排涝等措施有利于植物根的生长和对无机盐的吸收。 影响细胞呼吸的因素及实践应用: 1.内部因素:(1)不同种类的植物细胞呼吸速率不同,如旱生植物小于水生植物,阴生植物小于阳生植物。(2)同一植株在不同的生长发育时期呼吸速率不同,如幼苗期、开花期呼吸速率较高,成熟期呼吸速率较低。 (3)同一植物的不同器官呼吸速率不同,如生殖器官大于营养器官。 2.环境因素: (1)温度 ①规律:呼吸作用在最适温度最强,超过最适温度,呼吸酶活性下降,甚至变形失活,呼吸受抑制;低于最适温度活性下降,呼吸受抑制。 ②应用:生产上常用这一原理在低温下贮存蔬菜、水果。在大棚蔬菜的栽培过程中夜间适当降温,降低呼吸作用,减少有机物的消耗,提高产量。 (2)O2的浓度 &①规律:在O2浓度为零时只进行无氧呼吸;O2浓度为10%以下,既进行有氧呼吸又进行无氧呼吸;O2 浓度为l0%以上,只进行有氧呼吸。 ②应用:生产中常利用降低氧的浓度抑制呼吸作用,藏少有机物消耗这一原理来延长蔬菜、水果保鲜时间。(3)CO2浓度 ①规律:从化学平衡的角度分析,C02浓度增加,呼吸速率下降。②应用:在蔬菜和水果的保鲜中,增加CO:浓度具有良好的保鲜作用。 (4)水含量①规律:在一定范围内,细胞呼吸强度随含水量的增加而加强,随含水量的减少而减弱。 ②应用:在作物种子的储藏时,将种子风干,以减弱细胞呼吸,减少有机物的消耗。思维拓展:1、温室中栽培农作物提高产量的措施有两个方面,提高光合强度和降低呼吸消耗。影响细胞呼吸的因素有温度、氧气浓度、二氧化碳浓度、含水量等,但农业生产中最常考虑的是温度。其他几个因素不容易控制。2、植物细胞呼吸的最适温度一般在25~35℃,最高温度在35~45℃。3、绿色植物细胞呼吸的最适温度总比光合作用的最适温度高。一般情况下,植物细胞呼吸的最适温度为30℃,而光合作用的最适温度为25℃。
发现相似题
与“将酵母菌培养液进行离心处理。把沉淀的酵母菌破碎后,再次离心处..”考查相似的试题有:
963457870978683753658036298407酵母菌以糖类、淀粉和其它工农业副产物为原料,用发酵培养法生产的微生物制品。是酵母菌的简称。酵母是人类直接食用量最大的一种微生物。 1986年,全世界面包酵母的年产量为180万吨 (以30%固形物计)。酵母菌体含有丰富的蛋白质、脂肪、糖分和B族维生素等,以及酶、辅酶、核糖核酸、甾醇和一些新陈代谢的中间产物。有些酵母菌如酿酒酵母在嫌气条件下具有将糖转化为乙醇和二氧化碳的能力。
酵母菌是单细胞真核微生物。酵母菌细胞的形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等。比细菌的单细胞个体要大得多,一般为1~5微米′5~30微米。酵母菌无鞭毛,不能游动。&酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。
酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇(俗称酒精)来获取能量。C6H12O6(酶)→2C2H5OH(酒精)+2CO2+少量能量&在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。在有氧气的环境中,酵母菌将葡萄糖转化为水和二氧化碳。无氧的条件下,将葡萄糖分解为二氧化碳和酒精。&在温度适合时,氧气和养料充足的条件下,以出芽方式迅速增殖。化学元素酵母菌酵母的化学组成与培养基、培养条件和酵母本身所处的生理状态有关。一般情况下:酵母细胞的平均元素组成(%)如下:&碳-47&氢-6.5&氧-31&氮-7.5~10&磷-1.6~3.5&其他元素的含量很少(%)&钙-0.3~0.8&钾-1.5-2.5&镁--0.1~0.4&钠-0.06-0.2&硫-0.2&在酵母中发现的微量元素(mg/kg)&铁--90-350&铜:20-135&锌:100-160&钴:15-65细胞结构细胞壁酵母菌细胞壁厚约25~70nm,细胞壁分为三层,外层为甘露聚糖;中层为蛋白质,其中多数是酶,少数是结构蛋白;内层为葡聚糖,它使细胞保持一定的机械强度。此外,细胞壁还含有少量脂类和几丁质(芽痕)。&&不同种属的酵母菌细胞壁不含甘露聚糖。细胞膜酵母菌的细胞膜是由磷脂双分子层构成,中间嵌有甾醇和蛋白质。细胞核每个细胞通常只有一个核,但也有含有两个核或者甚至多个核。细胞核由、染色质、核仁和核基质组成。&  核由双层膜包被,核膜上有许多核孔。染色质的基本单位是核小体,它是由DNA与组蛋白结合而成。染色体外DNA主要有两类,即线粒体DNA和2μm质粒DNA。线粒体DNA是双链DNA,编码大量呼吸酶。细胞质和细胞器细胞质位于细胞膜内,是一种粘稠液体,内含各种细胞器,如线粒体、内质网、核糖体、微体、液泡。
啤酒酵母的菌落大多数酵母菌的菌落特征与细菌相似,但比细菌菌落大而厚,菌落表面光滑、湿润、粘稠,容易挑起,菌落质地均匀,正反面和边缘、中央部位的颜色都很均一,菌落多为乳白色,少数为红色,个别为黑色。
酵母菌多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。酵母菌是单细胞真核微生物。酵母菌细胞的形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等。比细菌的单细胞个体要大得多,一般为1~5微米或5~20微米。酵母菌无鞭毛,不能游动。酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。&  酵母菌的遗传物质组成:细胞核DNA,线粒体DNA,以及特殊的质粒DNA。&大多数酵母菌的菌落特征与细菌相似,但比细菌菌落大而厚,菌落表面光滑、湿润、粘稠,容易挑起,菌落质地均匀,正反面和边缘、中央部位的颜色都很均一,菌落多为乳白色,少数为红色,个别为黑色。未发现其有性阶段的酵母菌称假酵母。
保护肝脏让面粉发酵有很多办法,如发酵、老面发酵和酵母发酵等。
这些方法原理上都一样,就是通过发酵剂在面团中产生大量二氧化碳气体,蒸煮过程中,二氧化碳受热膨胀,于是面食就变得松软好吃了。
但是前两种方法都各有弊端,小苏打会严重破坏面粉中的B族维生素,老面发酵会使面团产生酸味,只有酵母发酵,不仅让面食味道好,还提高了它的营养价值。
酵母分为鲜酵母、干酵母两种,是一种可食用的、营养丰富的单细胞微生物,营养学上把它叫做“取之不尽的营养源”。除了蛋白质、碳水化合物、脂类以外,酵母还富含多种维生素、矿物质和酶类。有实验证明,每1公斤干酵母所含的蛋白质,相当于5公斤大米、2公斤大豆或2.5公斤猪肉的蛋白质含量。因此,馒头、面包中所含的营养成分比大饼、面条要高出3~4倍,蛋白质增加近2倍。
发酵后的酵母还是一种很强的抗氧化物,可以保护肝脏,有一定的解毒作用。酵母里的硒、铬等矿物质能抗衰老、抗肿瘤、预防动脉硬化,并提高人体的免疫力。发酵后,面粉里一种影响钙、镁、铁等元素吸收的植酸可被分解,从而提高人体对这些营养物质的吸收和利用。制品疏松酵母在面团发酵中产生大量的二氧化碳,并由于面筋网络组织的形成,而被留在网状组织内,使烘烤食品组织疏松多孔,体积增大。
酵母还有增加面筋扩展的作用,使发酵时所产生的二氧化碳能保留在面团内,提高面团的持气能力。如用化学数疏松剂则无此作用。改善风味面团在发酵过程中,经历了一系列复杂的生物化学反应,产生了面包制品特有的发酵香味。同时,便形成了面包制品所特有的芳香,浓郁,诱人食欲的烘烤香味。
鲜味剂对食品风味的作用原理:
在食品中添加鲜味剂,可提高食品总的味觉强度,还可以用来增强食品的一些风味特征,如持续性、温和感、浓厚感等。鲜味剂的添加量并非越多越好。研究表明MSG(味精)在食品重量的0.2~0.8%时有最好的增味效果,如此相对的5′-IMP(单磷酸肌苷二钠)约为0.02~0.04%时,可得当量的增味强度。但还该考虑鲜味剂与NaCl的比例。如将MSG和食盐添加到鸡汤或加有香辛料的鸡汤中,其最佳比例是0.33%的MSG、0.83%NaCL及0.38%MSG、0.87%NaCl。只有在一特定浓度范围内,才给予愉快的感受,过多则适得其反。
掩盖异味、淡盐效应:
在0.6~4.0%NaCl含量范围内,当添加的YE(酵母提取物)含量在0.4~3.0%之间时,可增强溶液的咸度口感。
当NaCl浓度&7%时,添加0.4%以上的YE可以不同程度削弱产品的咸度口感,且削弱程度随NaCL浓度和YE加量的上升有增大趋势。
YE的性能特点:
纯天然、富含多种氨基酸、多肽、呈味核苷酸。
味道鲜美、香气浓郁、肉质醇厚感强。
耐高温,高温条件下可赋予食品更好的风味。增加营养因为酵母的主要成分是蛋白质,几乎占了酵母干物质的一半含量,而且人体必需氨基酸含量充足,尤其是谷物中较缺乏的赖氨酸含量较多。另一方面,含有大量的维生素B1,维生素B2及尼克酸。所以,酵母能提高发酵食品的营养价值。模式应用酵母作为模式生物的最好例子体现在那些通过连锁分析和定位克隆然后测序验证而获得的人类遗传性疾病相关基因的研究中,后者的核苷酸序列与酵母基因的同源性为其功能研究提供了极好的线索。例如,人类遗传性非息肉性小肠癌相关基因与酵母的MLH1、MSH2基因,运动失调性毛细血管扩张症相关基因与酵母的TEL1基因,布卢姆氏综合征相关基因与酵母的SGS1基因,都有很高的同源性。遗传性非息肉性小肠癌基因在中表现出核苷酸短重复顺序不稳定的细胞表型,而在该人类基因被克隆以前,研究工作者在酵母中分离到具有相同表型的基因突变(MSH2和MLH1突变)。受这个结果启发,人们推测小肠癌基因是MSH2和MLH1的同源基因,而它们在核苷酸序列上的同源性则进一步证实了这一推测。布卢姆氏综合征是一种临床表现为性早熟的遗传性疾病,病人的细胞在体外培养时表现出生命周期缩短的表型,而其相关基因则与酵母中编码蜗牛酶的SGS1基因具有很高的同源性。与来自布卢姆氏综合征个体的培养细胞相似,SGS1基因突变的酵母细胞表现出显著缩短的生命周期。Francoise 等研究了170多个通过功能克隆得到的人类基因,发现它们中有42%与酵母基因具有明显的同源性,这些人类基因的编码产物大部分与信号转导途径、膜运输或者DNA合成与修复有关,而那些与酵母基因没有明显同源性的人类基因主要编码一些膜受体、血液或免疫系统组分,或人类特殊代谢途径中某些重要的酶和蛋白质。 工程应用单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。1981年酿酒酵母表达了第一个外源基因----干扰素基因,随后又有一系列外源基因在该系统得到表达干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。原因是培养基中维特质粒高拷贝数的选择压力消失质粒变得不稳定,拷贝数下降。拷贝数是高效表达的必备因素,因此拷贝数下降,也直接导致外源基因表达量的下降。同时,实验室用培养基成分复杂且昂贵,当采用工业规模能够接受的培养基时,导致了产量的下降。为克服酿酒酵母的局限,1983年美国 Wegner 等人最先发展了以甲基营养型酵母(methylotrophic&yeast)为代表的第二代酵母表达系统。甲基营养型酵母包括:Pichia、Candida 等。以 Pichia·pastoris(毕赤巴斯德酵母)为宿主的外源基因表达系统近年来发展最为迅速,应用也最为广泛。毕赤酵母系统的广泛应用,原因在于该系统除了具有一般酵母所具有的特点外。
营养酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质。属于异养。水分像细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。酸度酵母菌能在pH值为3.0-7.5&的范围内生长,最适pH&值为pH4.5-5.0。温度在低于水的冰点或者高于47℃的温度下,&酵母细胞一般不能生长,最适生长温度一般在20℃~30℃。氧气酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。用途 最常提到的酵母酿酒酵母(也称面包酵母)(Saccharomyces&cerevisiae),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。酵母菌中含有环状DNA---质粒,可以用来作基因工程的载体。
因为酵母多被用于发面,很多人误认为酵母是食品添加剂,但酵母在全球范围都被认定为食品,它不属于食品添加剂。在我国,酵母属于食品的最直接的法律依据是GB,其&规定酵母的食品分类号为16.04;具体可查阅《食品添加剂卫生使用卫生标准》GB附录F,即第248页。并且酵母被归为“其它食品”类,所有酵母产品均应标注有QS证。如果是食品添加剂则必须在产品包装上标注“食品添加剂”字样,无QS标识。
公元前2300年,人类就开始利用含酵母的“老酵”制作面包。从埃及塞倍斯(Thebes)地区出土的面包房和酿酒房的残余模型看,早在公元前2000 年人类就已较好地利用酵母制作发酵食品和酿酒。公元前13世纪,面包焙烤的技术从埃及传到地中海和其它地区。1680年 A.van列文虎克用显微镜从一滴啤酒中发现酵母细胞,不久,人类就开始有意识地利用酵母(啤酒酵母泥)发面。酵母的重要性逐渐引起工业界的注意。19世纪中期,欧洲产生了大量人口密集地区,要求工业界大规模的生产面包酵母以满足生产面包的需要。1846年,奥地利人 M.马克霍夫在维也纳建立世界上第一个酵母厂。该厂以粮食为原料,采用温和的通风培养法同时得到酵母和酒精,此法被称为“维也纳法”。因为是采用压榨机将酵母从培养液中分离出来,所以产品称为“压榨酵母”。1876年,法国人L.巴斯德关于空气中的氧能促进酵母繁殖理论的发表,为大规模通风培养生产酵母奠定了基础。20世纪初期,由于酵母离心机的问世,丹麦和德国开始采用楚劳夫(Zulauf)法生产酵母,即将糖液缓慢地流入通风的发酵液内,俗称“流加培 养法”、“批式培养法”。楚劳夫法产品得率高,原料消耗低,过程易于控制,一直沿用至今,并不断得到改进和完善。20世纪20年代起,酵母生产用原料扩大 到使用糖蜜、液、亚硫酸纸浆废液和糖蜜酒精糟液等。60年代,以石油、煤炭和天然气等碳氢化合物及其二次加工产品(如醋酸、乙醇和甲醇等)为原料的工厂相继建立,改变了长期以来人们利用碳水化合物为原料的传统。爆发不久,德国开始研究用现代化方法生产酵母,以解决粮食缺乏和生产成本高的问题。至此,生产的实践和科学的发展为活性干酵母的生产提供了条件。的爆发客观上推动了酵母生产的发展。由于压榨酵母含水量高,易于腐败,需要冷藏车运输等因素,不能满足战时特 殊环境的要求,导致活性干酵母的大规模生产。1945年,美国和欧洲一些军事机构、工厂共生产 400多万磅活性干酵母供战时急需。活性干酵母除主要供应面包和糕点等焙烤行业外,已扩大到在酿酒主要是葡萄酒和其它果酒酿造中应用。由于遗传工程和干燥技术的发展,一种新型的、高发酵力的、可直接与面粉混合使用制成面团的快速活性干酵母在60年代末问世,由荷兰古斯特公司首先开发和生产。中国的酵母生产始于1922年。1949年以前只有上海大华利卫生食料厂和上海新亚酵素厂生产面包酵母,年产量仅为12t(以干酵 母计)。50年代,中国的酵母生产有了较大的发展,建立了数十家生产厂,并形成了独立的工业体系,80年代初,酵母生产厂已迅速增加到40多家。广东省酵 母生产居全国首位,到1988年,已建成年产2kt快速活性干酵母工厂两家。此外,江苏、河南等地建成利用味精废液、酒精废液等生产饲料酵母的工厂,年产量为 100~500t。面包酵母的种类已由单一的压榨酵母增加了活性干酵母、快速活性干酵母。食用酵母、药用醇母和饲料酵母的生产也有不同程度的发展。 1985年,中国酵母总产量已达11kt,其中面包酵母为5kt左右。世界酵母生产正向大型化和自动化方向发展,生产过程已由计算机控制,劳动生产率高,如丹麦酒精公司酵母厂平均每人每年生产200t 压榨酵母。面包酵母产量较大的有荷兰吉斯特公司,年产量为200kt,其中一半加工成快速活性干酵母出口;法国勒沙夫公司为150美国环球食品公司 为120kt。
面包酵母又分压榨酵母、活性干酵母和快速活性干酵母。&①压榨酵母:采用酿酒酵母生产的含水分70~73%的块状产品。呈淡黄色,具有紧密的结构且易粉碎,有强的发面能力。在4℃可保藏1个&月左右,在0℃能保藏2~3个月。产品最初是用板框压滤机将离心后的酵母乳压榨脱水得到的,因而被称为压榨酵母,俗称鲜酵母。发面时,其用量为面粉量的&1~2%,发面温度为28~30℃,发面时间随酵母用量、发面温度和面团含糖量等因素而异,一般为1~3小时。&②活性干酵母:采用酿酒酵母生产的含水分8%左右、颗粒状、具有发面能力的干酵母产品。采用具有耐干燥能力、发酵力稳定的醇母经培养得到鲜酵母,再经挤压成型和干燥而制成。发酵效果与压榨酵母相近。产品用真空或充惰性气体(如氮气或二氧化碳)的铝箔袋或金属罐包装,货架寿命为半年到&1年。与压榨酵母相比,它具有保藏期长,不需低温保藏,运输和使用方便等优点。&③快速活性干酵母:一种新型的具有快速高效发酵力的细小颗粒状(直径小于1mm)产品。水分含量为4~6%。它是在活性干酵母的基础上,采用遗传工程技术获得高度耐干燥的株,经特殊的营养配比和严格的增殖培养条件以及采用流化床干燥设备干燥而得。与活性干酵母相同,采用真空或充体保藏,货架寿命为1年以上。与活性干酵母相比,颗粒较小,发酵力高,使用时不需先水化而可直接与面粉混合加水制成面团发酵,在短时间内发酵完毕即可焙烤成食品。该产品在本世纪70年代才在市场上出现,深受消费者的欢迎。食品酵母不具有发酵力的繁殖能力,供人类食用的干酵母粉或颗粒状产品。它可通过回收啤酒厂的酵母泥、或为了人类营养的要求专门培养并干燥而得。美国、日本及欧洲一些国家在普通的粮食制品如面包、蛋糕、饼干和烤饼中掺入 5%左右的食用酵母粉以提高食品的营养价值。酵母可作为肉类、果酱、汤类、奶酪、面包类食品、蔬菜及调味料的添加剂;在婴儿食品、健康食品中作为食品营养强化剂。由酵母自溶浸出物制得的5′-核苷酸与味精配合可作为强化食品风味的添加剂(见)。从酵母中提取的浓缩转化酶用作方蛋夹心巧克力的液化剂。从以乳清为原料生产的酵母中提取的乳糖酶,可用于牛奶加工以增加甜度,防止乳清浓缩液中乳糖的结晶,适应不耐乳糖症的消费者的需要。 药用酵母制造方法和性质与食品酵母相同。由于它含有丰富的蛋白质、维生素和酶等生理活性物质,医药上将其制成酵母片如食母生片,用于治疗因不合理的饮食引起的消化不良症。体质衰弱的人服用后能起到一定程度的调整新陈代谢机能的作用。在酵母培养过程中,如添加一些特殊的元素制成含硒、铬等的酵母,对一些疾 病具有一定的疗效。如含硒酵母用于治疗克山病和大骨节病,并有一定防止细胞衰老的作用;含铬酵母可用于治疗糖尿病等。饲料酵母通常用假丝酵母或脆壁克鲁维酵母经培养、干燥制成。是不具有发酵力,细胞呈死亡状态的粉末状或颗粒状产品。它含有丰富的蛋白质(30~40%左右)、B 族维生素、氨基酸等物质,广泛用作动物饲料的蛋白质补充物。它能促进动物的生长发育,缩短饲养期,增加肉量和蛋量,改良肉质和提高瘦肉率,改善皮毛的光泽度,并能增强幼禽畜的抗病能力。
酵母菌有多种繁殖方式,有人把只进行无性繁殖的酵母菌称作“假酵母”,而把具有有性繁殖的酵母菌称作“真酵母”。 酵母菌的无性繁殖芽殖:酵母菌最常见的无性繁殖方式是芽殖。芽殖发生在细胞壁的预定点上,此点被称为芽痕,每个酵母细胞有一至多个芽痕。成熟的酵母细胞长出芽体,母细胞的细胞核分裂成两个子核,一个随母细胞的细胞质进入芽体内,当芽体接近母细胞大小时,自母细胞脱落成为新个体,如此继续出芽。如果酵母菌生长旺盛,在芽体尚未自母细胞脱落前,即可在芽体上又长出新的芽体,最后形成假菌丝状。& 裂殖:是少数酵母菌进行的无性繁殖方式,类似于细菌的裂殖。其过程是细胞延长,核分裂为二,细胞中央出现隔膜,将细胞横分为两个具有单核的子细胞。& 芽裂:母细胞总在一端出芽,并在芽基处形成隔膜,子细胞呈瓶状。这种方式很少。酵母菌的有性繁殖酵母菌是以形成子囊和子囊孢子的方式进行无性繁殖的。两个临近的酵母细胞各自伸出一根管状的原生质突起,随即相互接触、融合,并形成一个通道,两个细胞核在此通道内结合,形成双倍体细胞核,然后进行减数分裂,形成4个或8个细胞核。每一子核与其周围的原生质形成孢子,即为子囊孢子,形成子囊孢子的细胞称为子囊。&
利用发酵工业中常用的通风流加培养法,将试管内的纯种酵母经过数次逐级扩大增殖培养,再在发酵罐内增殖培养后,经过离心分离、压榨和干燥得到酵母产品。
多数酵母可以分离于富含糖类的环境中,比如一些(、、等)或者植物分泌物(如的汁)。一些酵母在体内生活。
一般酵母菌被指认为条件性致病菌,&特别容易对免疫力低下的病人造成感染.&属于真菌感染中的一种形式。例如红酵母(Rhodotorula)会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)(Candida&albicans)会生长在阴道衬壁等湿润的人类上皮组织。&白色念珠菌&Candida&albicans&能够引起鹅口疮以及尿道炎等感染疾病.&白色念珠菌在人类身上主要出现在口腔,&肠道,&尿道等部位的粘膜上,&小部分生活在皮肤表面.&正常情况下,&念珠菌以酵母细胞型存在,&没有致病性;&在一些因素的诱导下,&比如免疫力缺陷,&过量使用等,&白色念珠菌大量转化为菌丝生长型,&并大量繁殖,&入侵患者粘膜系统,&引起炎症而发病.&在怀孕晚期服用避孕药的妇女中,&极易感染尿道炎,&其中一个可能的诱因便是身体上的激素出现了失衡。 白色隐球菌&Cryptococcus&albidus&是一种一般对人类无害的出芽型酵母菌.&但在免疫系统缺陷者身上,&可能感染病人引起一种名为隐球菌病(cryptococcosis)的疾病。另外,&有案例显示,&一位进行免疫抑制治疗的病人肺部受到白色隐球菌的感染后,&导致出现急性呼吸窘迫综合症(ARDS)的病症。&&&& 酿酒酵母&Saccharomyces&sereviciae&一般不被认为是条件性致病菌,&但是也有少量的报告显示出酿酒酵母具有致病的能力。
万方数据期刊论文
光谱学与光谱分析
万方数据期刊论文
万方数据期刊论文
光谱学与光谱分析
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和770多万专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:22次
参与编辑人数:11位
最近更新时间: 16:30:30
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品

我要回帖

更多关于 细胞器教学设计 的文章

 

随机推荐