在已知rtabcC中,∠ACB=90°,D、...

已知:如图,∠ACB=90°,M是AB的中点,延长BC到点D,使CD=1/2AB.求证:∠B=2∠D
大大篭啥买
证明:【此题缺一条件,即连接DM】连接CM∵⊿ABC是直角三角形,M是斜边的中点【根据直角三角形斜边中点等于斜边的一半】∴CM=½AB=BM∴∠MCB =∠B∵CD=½AB∴CD=CM∴∠DMC =∠D∵∠MCB=∠DMC+∠D=2∠D∴∠B=2∠D
为您推荐:
其他类似问题
扫描下载二维码正确教育旗下网站
题号:3945671试题类型:单选题 知识点:直角三角形的性质及判定,勾股定理&&更新日期:
如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为(
)A.&&&&&& B.+1&&&&&& C.+2&&&&&& D.+3
难易度:中等
必须在注册登录后,才可以查看解析!
橡皮网学生APP下载
拍照搜题,秒出答案!
名校试题,天天更新,免费查看!
直角三角形定义:有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。
直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。(2)(AB)2=BD·BC。(3)(AC)2=CD·BC。性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。性质7:如图,1/AB2+1/AC2=1/AD2性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。性质9:直角三角形直角上的角平分线与斜边的交点D 则&&& BD:DC=AB:AC
直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。
定理作用⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理的应用:数学从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。生活勾股定理在生活中的应用也较广泛,举例说明如下:1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2、2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。通俗来说,就是分三步走:第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。
相关试题推荐
1、 关于x的一元二次方程mx2-(3m-1)x + 2m-1=0的根的判别式的值为1,求m的值及该方程的根。
2、 如果关于x的一元二次方程Kx2-6x+9=0有两个不相等的实数根,那么K的取值范围是[ ]A. KB. K≠0 C. KD. K>1
3、 先阅读,再填空解答:方程x2-3x-4=0的根是:x1= -1,x2= 4,则x1+x2=3,x1x2= -4。方程3x2+10x+8=0的根是:x1= -2,x2= -,则x1+x2= -,x1x2=(1)方程2x2+x-3=0的根是:x1= ,x2= ,则x1+x2= ,x1x2= ;(2)若x1x2是关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2= ,x1x2= ;(3)如果x1,x2 是方程x2+x-3=0 的两个根,根据(2)所得结论,求x12+x22 的值。
4、 若方程2x2-kx+x+8=0有两个相等的实数根,则k值为[ ]A. 9或7 B. -7 C. 9或-7 D. -9或-7
5、 关于x的方程ax2+2(a-3)x+(a-2)=0至少有一个整数解,且a是整数,求a的值。
6、 若关于x的一元二次方程x2-3x+m=0有实数根,则m的取值范围是( )。
7、 不解方程,判断方程5x2-7x+5=0的根的情况是[ ]A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根
8、 一个凸多边形共有35条对角线,它是几边形?
9、 如图,某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转。某一指令规定:机器人先向正前方行走3米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米。
10、 如图,DE是△ABC的中位线,S△ADE = 3,则S△ABC = ( )。
11、 如图,AB是⊙O的直径,C是⊙O上一点,若AC:BC=4:3,AB=10cm,OD⊥BC于点D,则BD的长为( )。
12、 如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE 。(1)试说明BE·AD=CD·AE (2)根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想(只须写出有线段的一组即可)。
13、 如图1,△ABC中,AI、BI分别平分∠BAC、∠ABC。CE是△ABC的外角∠ACD的平分线,交BI延长线于E,联结CI。(1)△ABC变化时,设∠BAC=2α 。若用α表示∠BIC和∠E,那么∠BIC=_______,∠E =_______;(2)若AB=1,且△ABC与△ICE相似,求相应AC长;(3)如图2,延长AI交EC延长线于F。当△ABC形状、大小变化时,图中有哪些三角形始终与△ABI相似?写出这些三角形,并选其中之一证明。
14、 已知△ABC∽△A'B'C ,顶点A 、B 、C分别与A' 、B' 、C'对应,△ABC的周长为48,△A'B'C 的周长为60,且AB=12 ,则A'B'=( )。
15、 如图,B、D分别是AC、CE上的点,BE交AD于点F,AB·AC=AF·AD,∠A=20°,∠C=50°,求∠E的度数。
16、 把两块全等的直角三角形ABC和DEF 叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O 重合,其中∠ABC=∠DEF=90。,∠C=∠F=45。,AB=DE=4把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q。(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ,此时AP﹒CQ的值为( )。将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α。 其中0。&α&90。 ,则 AP﹒CQ的值是否会改变?答:( )(填“会”或“不会”)此时AP﹒CQ的值为( )(不必说明理由) (2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由。
扫描二维码马上下载橡皮网APP
拍照搜题,秒出答案!
名校试题,天天更新,免费查看!
接收老师发送的作业,在线答题。(2014贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,_中考试题_初中数学网
您现在的位置:&&>>&&>>&&>>&&>>&正文
(2014贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,
&&&热&&&&&★★★
(2014贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,
作者:佚名
文章来源:
更新时间: 16:47:41
(;贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC. (1)求证:四边形ADCF是菱形; (2)若BC=8,AC=6,求四边形ABCF的周长.
(1)证明:∵将△ADE绕点E旋转180°得到△CFE, ∴AE=CE,DE=EF, ∴四边形ADCF是平行四边形, ∵D、E分别&∴DF⊥AC, ∴四边形ADCF是菱形; (2)解:在Rt△ABC中,BC=8,AC=6, ∴AB=10, ∵D是AB边别为AB,AC边上的中点, ∴DE是△ABC的中位线, ∴DE∥BC, ∵∠ACB=90°, ∴∠AED=90°, <BR中点, ∴AD=5, ∵四边形ADCF是菱形, ∴AF=FC=AD=5, ∴四边形ABCF的周长为8+10+5+5=28.
试题录入:admin&&&&责任编辑:admin&
上一篇试题: 下一篇试题:
【字体: 】【】【】【】【】【】
  网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F求证:BD=BF.
恰恰帅丶224
证明:∵Rt△ABC中,∠ACB=90°,AC=BC,∴∠1+∠2=90°,∵BF∥AC,∴∠ACB=∠CBF=90°,∵CE⊥AD,∴∠2+∠3=90°,∴∠1=∠3,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴BF=CD,∵D为BC边上的中点,∴BD=CD,∴BD=BF.
为您推荐:
其他类似问题
先根据Rt△ABC中,∠ACB=90°,∠2+∠1=90°,再根据BF∥AC可知∠ACB=∠CBF=90°,由CE⊥AD可知∠2+∠3=90°,由∠2+∠1=90°可知∠1=∠3,故可得出△ACD≌△CBF,根据全等三角形的性质即可得出结论.
本题考点:
全等三角形的判定与性质;等腰三角形的性质.
考点点评:
本题考查的是全等三角形的判定与性质,熟知全等三角形的ASA定理是解答此题的关键.
过B作BH垂直BC交CF ,根据角边角可证明三角形CBH和三角形ACD全等所以:CD=BH,而BF=BD=CD,所以BH=BF,又因为过一点只有一条直线与已知直线垂直,所以H与F重合。所以:DB 垂直BF,又BF=BD,角DBA=45°,可知:AB垂直平分DF
扫描下载二维码当前位置:
>>>如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与..
如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长交BC的延长线于点F.(1)求证:∠BDF=∠F;(2)如果CF=1,sinA=,求⊙O的半径.
题型:解答题难度:中档来源:不详
(1)证明见解析;(2).试题分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)由CF=1,sinA=,在Rt△ABC和Rt△AOC中分别应用锐角三角函数定义求解.(1)如图,连接OE,#%源:中国教育^&出版网@]∵AC与圆O相切,∴OE⊥AC.∵BC⊥AC,∴OE∥BC.∴∠1=∠F.&又∵OE=OD,∴∠1=∠2.∴∠BDF=∠F.(2)∵sinA=,∴可设BC=3x, AB=5x.又∵CF=1,∴BF=3x+1.由(1)得:∠BDF=∠F ,∴BD=BF.∴BD=3x+1.中国∴OE=OB=, AO=AB﹣OB=.]∵ sinA=,∴,即,解得:x=.∴⊙O的半径为.
马上分享给同学
据魔方格专家权威分析,试题“如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与..”主要考查你对&&圆的认识,正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算),弧长的计算 ,扇形面积的计算 &&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
圆的认识正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)弧长的计算 扇形面积的计算
圆的定义:圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。6 由两条半径和一段弧围成的图形叫做扇形。7 由弦和它所对的一段弧围成的图形叫做弓形。8 顶点在圆心上的角叫做圆心角。9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.……在实际应用中,一般取π≈3.14。11圆周角等于相同弧所对的圆心角的一半。12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;扇形弧长—L ;&&&&&&&&&&&&&&&&&&&&&&&&&&&&周长—C ;&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 面积—S。圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。(2)有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。(3)有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。(5)弦切角的度数等于它所夹的弧的度数的一半。(6)圆内角的度数等于这个角所对的弧的度数之和的一半。(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。(8)周长相等,圆面积比长方形、正方形、三角形的面积大。点、线、圆与圆的位置关系:点和圆位置关系①P在圆O外,则 PO&r。②P在圆O上,则 PO=r。③P在圆O内,则 0≤PO&r。反过来也是如此。直线和圆位置关系①直线和圆无公共点,称相离。 AB与圆O相离,d&r。②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d&r。③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)圆和圆位置关系①无公共点,一圆在另一圆之外叫外离,在之内叫内含。②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P&R+r;外切P=R+r;内含P&R-r;内切P=R-r;相交R-r&P&R+r。圆的计算公式:1.圆的周长C=2πr=或C=πd2.圆的面积S=πr23.扇形弧长L=圆心角(弧度制)× r = n°πr/180°(n为圆心角)4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)5.圆的直径 d=2r6.圆锥侧面积 S=πrl(l为母线长)7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)圆的方程:1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)2+(y-b)2=r2。特别地,以原点为圆心,半径为r(r&0)的圆的标准方程为x2+y2=r2。2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:①当D2+E2-4F&0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半径的圆;②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);③当D2+E2-4F&0时,方程不表示任何图形。3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。经过圆x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。圆的历史:&&&&& 圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。&&&&&& 约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。&&&&& 会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。&&&&&& 任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3..1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。现在有了电子计算机,圆周率已经算到了小数点后六十万亿位小数了。正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。 正多边形和圆的关系:把一个圆分成n等份,依次连接各分点所得的多边形是这个圆的内接正n边形,这个圆叫这个正n边形的外接圆。 与正多边形有关的概念: (1)正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。 (2)正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。 (3)正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。 (4)正多边形的中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。 注:正n边形有n个中心角,这n个中心角相等且每个中心角为。圆的计算公式:1.圆的边长即的周长C=2πr=或C=πd2.圆的面积S=πr23.扇形弧长L=圆心角(弧度制)· r = n°πr/180°(n为圆心角)4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)5.圆的直径 d=2r6.圆锥侧面积 S=πrl(l为母线长)7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)8.圆心角所对的弧的度数等于弧所对的圆心角的度数;9.圆周角的度数等于圆心角的度数的一半;10.圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半;11.扇形圆心角n=(180L)/(πr)(度)。弧长:在圆周长上的任意一段弧的长弧长公式:n°的圆心角所对的弧长l的计算公式为。(n是圆心角度数,r是半径,l是圆心角弧长。)扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。显然,它是由圆周的一部分与它所对应的圆心角围成。扇形面积公式:(其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。)设半径R,1.已知圆心角弧度α(或者角度n)面积S=α/(2π)·πR2=αR2/2 S=(n/360)·πR22.已知弧长L:面积S=LR/2
发现相似题
与“如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与..”考查相似的试题有:
684632673900718519679285714519733084

我要回帖

 

随机推荐