如何学习高数学习方法?

热门城市 |
华北地区 |
东北地区 |
华东地区 |
华中地区 |
西南地区 |
西北地区 |
华南地区 |
2016高考信息:
特殊类招生:
高一必读:
各科辅导:
高二必读:
各科辅导:
高三必读:
各科辅导:
您现在的位置: &
来源:新浪教育 文章作者:李爽
&&& 从小到大,我个人就对数学特别感兴趣,小到口算买菜找多少零钱,大到现在博士研究期间天天推导各种复杂公式,无不觉得数学是最能体现一个人的思维能 力,判断能力、反应敏捷能力和聪明程度的学科。有很多学生无论在初中还是高中都很苦恼怎么才能学好数学、获得高分,这次我就总结下自己的切实经验,当然我 这里就不列举那些传统的官腔方法了,希望能从细节入手,真正解决大家学习数学时的困惑和问题,给你在黑暗中点盏明灯!
  如何真正学会数学(怎么预习和复习、上课)
  有的人说上课老师在那里呱呱一直说,可自己并没跟上,就没信心听下去了,或者是感觉上课听得听明白,可为什么一做题就错呢?这里我要说的是,你 上课听明白了,不代表那就是你的东西了,就和你看到孙杨如何游泳了,难道你就能一个猛子扎水里去游了吗?所以,我们要紧抓课前、课上和课后这三个环节!
  课前预习,是很多人忽略的环节,它的重要性大家也都知道,我想说的是,你的课前预习不仅仅是看看书就好了,而应该试图自己理解这节讲什么(关键 是自己理解),很简单就是你看了一遍三角函数,就合上书想想三角函数是什么?我能用它来干嘛?这种疑问会给你带来浅层的印象,上课时你立刻就有代入感了, 就像很多人玩游戏要先看下攻略啊,这样碰到问题就可以尝试各种方法来解决它。
  由于你课前预习了,上课时老师讲的很多东西是在加强你的印象,而且你之前的问题会一个个解开,你也会跟着老师的思路一直听下去,如果你的问题老 师也没解决,ok,你碰到了个好问题,这有可能就是困扰很多人的问题了!所以下课一定要第一时间解决你的疑惑,因为你一放,这个问题你估计就忘了&&所以 趁热要打铁!还有,上课的时候,你一定要打起12分的精神,这会减少你很多课下的无用功,你想想老师准备了那么长时间讲一节课,你却不好好听要课下自己 看&&这简直本末倒置嘛!所以,老师讲的再烂,也比你看有效果的多,所以如果你不是回回考140+的选手,就好好听老师讲课吧!
  如果你课前和课上都做得很好,那么课下这个环节就很好办啦?很多人说自己上课什么都会,做题什么都错!或者做题什么都会,考试什么都错!这就是 没有重视课下的结果。在课下,你应该再读一遍这节课学习的内容,然后每个公式和定义都要自己推导一遍!!这个十分关键,只有你自己不看书推导一遍公式,或 者自己复述定义的时候,你才知道你那里不会,而且推导这些公式绝对使你不用再刻意的记忆什么公式,而是信手拈来的~~举个例子,比如三角函数中的辅助角公 式,有人背的很熟,有人也勉强会推导,可是你们知道为什么要这样构造吗?
&&&&&&&&&&&&&&&&&&&&&&&&&&
  这里是恒等变形,可是为什么这样恒等变形呢?我们来回忆公式:
  对比这两个公式可以看出,由于,所以这里
  就填补了的位置,这也就是恒等变形的原因!以后的步骤我也就不用多说,你就明白了,我现在也没看课本,但是仍然能推出来,而且考试时我也是现推的,基本没错过,因为当你推过几遍后,你就真的理解了!才能真正听懂!
  所以,在课下,推导公式或者思考定义时,要多问几个为什么,而不是浮在表面的,再加上大量的练习,你的数学才能有点起色啊!如果你能坚持下来,那你的基础一定是扎实的,而且是牢不可破的!
  最后提及下做作业的问题,这个在后面的章节还要细讲,这里就说,数学是个需要大量练题的学科,因为需要你的熟练度,而且俗话不是说没有量的积 累,哪有质的飞越嘛!我们就是要熟练到,就算在考试中也是行云流水的算题,这都依托于平时的练题,你想如果平时你都是用眼睛算题&&想让自己在考试中神灵 相助!可能吗?所以,功夫在平时,在一点一滴,金字塔的塔基修建的是最慢的,但是慢慢往上,就平步青云了!
  如何刷卷纸,做作业(平时怎么刷?限时训练)
  今天讲一个所有人都问的问题,就是平时我是该刷卷纸还是看书呢?平时刷的卷纸也挺多,怎么就没用呢?这些个问题困扰了不知多少准高三学生,我希望把我自己的经验告诉大家,帮你解决你的困惑吧!
  有人给我说,我有个同学天天刷卷纸,时时刻刻都在刷,上课刷,下课刷,边吃饭边刷,有时睡觉还在刷&&,搞得我不刷都不行,都觉得自己落后别人好多!!(呵呵)我想说,刷卷纸无可厚非,但是刷了这么多卷纸真的起到了那么多卷纸的作用了吗?我们应该问每套卷纸要效率。
  首先刷卷纸,一定要限时做题!因为考试是限时的,你可以在平时写一套卷纸用10个小时,做的十分工整&&但是考试时谁会给你那么多时间呢?这是 很多人碰的问题就是平时做题都会,考试就是不行!因为,你在平时做题时很放松,脑袋比较灵光,而且做题无压力,你没做好谁会杀了你?是吧,而且有人还有虚 荣心,会时不时看看答案,蒙蔽下自己幼小的心灵!哈哈。所以,一定要限时做完一套卷纸,甚至限时做完一次作业,只有你在紧迫下适应了写题的氛围,你才能在 考试中达到较好的状态!
  当然,有人好不容易花了2个小时写完一套卷纸,觉得万事大吉了,说明天再对答案吧,然后就出去撒欢的玩耍&&其实,这错过了最好的检验和纠正自 己错误的时机!因为,做完卷纸你的思维是十分鲜活的,知道每道题你的思路是什么,而你过了一晚上甚至1个小时,就忘了你怎么选错了&&所以,你做完卷纸 时,一定要上个厕所立刻回来,坐下来静心的对答案,并且把自己错误的地方画出来,标明自己的错误,警示自己。同时思考几个问题:我为什么错了?答案为什么 对了?我和答案的思路差在哪?我怎样才能像答案一样思考?我的思路如果继续做能对吗?OK,当你把每道错题都这么仔仔细细分析过,并且牢牢记住自己的错 因,我想下回你犯这个错误的几率会小很多的!
  刚开始,你这样写一套卷纸,估计会花费5,6个小时,但是你会发现,20套卷纸以后,你的错误会越来越少,你的成就感也会越来越强,在考试中也会体现出来的。
  如何对待错题(怎么改错,错题本怎么用)
  上节说了如何刷卷纸,刷了这么多卷纸可定会有很多错题,有的人根本不会再看自己的错题,而会继续刷新的卷纸,我想刷新的卷纸对他们会有征服感吧!可是,这些人就会有些问题今天错了,下回还错,考试也错,就是有些错题他总也记不住!
  这是因为,他没有重视错题的价值!他的错误思维在第一次建立,并且没有被改变,一直延续了下去,所以错题是要经常看的,并且反复不断的做,错, 找原因,知道自己搞定了自己的弱点!有的人的错题本整的和要卖的书一样整齐,但是却只是装饰品,所以,错题和错题本一定要常看常新!
  当你刷完卷纸,一定要用红笔在你错的地方大大的写上错因,然后早读或者课件或者闲的时候,翻一下,看看你上次的错误你能不能这次改正,事实是很 多人会不止一次犯相同的错误,我也一样!你的错题,我建议你至少看过5遍,这叫常看。每次看错题,都要悟出自己的错误和弱点,并且想办法纠正自己的思维定 势,每次纠正一点,慢慢你的思维就会和答案一样啦!这叫常新!
  我觉得错题的价值特别大,每次考试当中你的错题要比你做对的更重要,因为你平时做对的也 会做对,但是你做错的如果高考做对了,你就真的赚了!所以从错题中挖掘你的潜力才是王道!这里举个我师兄的例子,他当年高考145+,我问他你的数学这么 好,秘诀外传不?他说,最大的秘诀就在看错题本,他的错题本都被他翻烂了,使得他犯过的错误基本不再犯了!这让他每次考试都很胸有成竹,因为很多陷阱他都 跳过&&但是都记得特别清楚!这就是错题的力量啊!
  顺便说一下,有人问不知道自己的薄弱环节在哪?这个很好办,找出你的前5次考试或者前5套卷纸,看看你错的都是什么地方,OK恭喜你,你的弱点就在那里,加油补强他吧!!
  如何养成良好的习惯(细心,答题过程,练字)
  这次我们说下如何让你改掉粗心的毛病吧!很多人考完试都会懊悔自己没有足够细心而丢了很多分数,或者是解析几何因为算错了一步中间过程而导致此 题满盘皆输&&其实,粗心是不好的生活习惯的一种在学习上的延续,说的有点绕口,举个例子吧。你会发现,粗心的人他在生活中会有以下行为:被子基本不叠床 上桌上乱糟糟、刚才拿的遥控器下一秒就不知道放哪了、爸妈刚交代的事情转眼就忘了、如果有文具袋的话就是各种笔一大堆但是能用的没几支需要试来试去&&这 些都是生活中的细节,都表现了这个人不好的习惯:粗心、马虎、神经大条,所以这个习惯自然而然就带到了平时的学习和考试中去,算题自然而然就有很多问题。 反观那些成绩好的同学,绝大多数都是生活井井有条,桌上干干净净的,所以想改到粗心的毛病很简单,就是从生活中一点一滴的小事做起,让自己变得心细,慢慢 的在平时写作业或者考试中你就发现,不知不觉你的正确率就提高了,而这也正是习惯的力量带来的好处!
  既然说到了习惯,就在说说答题过程这个习惯的养成,在高中时我的卷纸经常是展览的对象(有点不好意思&&),因为老师说我的答题过程就和答案一 样,这也得益于平时做作业就养成的好习惯。在做作业时,我都会一丝不苟的把每道题的步骤写的很完善和工整,不会因为这个耽误太多时间,在考试中就会自然流 露出这种训练的价值!而也正是这种习以为常的好习惯,才能帮助我在中高考的数学上有较大的突破。所以大家如果平时做题就马马虎虎应付了事,这样真的会对考 试造成很大的影响,你若是想洗心革面重新做人的话,你就好好研究每道题的答案是怎么写的、怎么来的,然后全力模仿和创造吧!
  如果你的习惯已经很好了,若想更加完美,这就需要卷纸的&脸面&好看些,也就是字!一定要漂亮,或者退一步,一定要工整!这个不需要你刻意去改 变什么,就是每天练练字就好,相信习惯的力量吧,每天你都在写好看的字,久而久之你的书面就会有很大改观,你去看看那些高分卷纸,那个不是让你看了如沐春 风呢?这个细节大家一定要加把劲,绝对会给你增色不少。
  如何培养数学思维(产生兴趣,严谨,有根有据,自学能力的培养)
  大家如果读了之前的经验,而且你也努力去做了,我只希望你能坚持下去!而你的分数的提高也是早晚的事。
  但是有人说,我确实对数学不感兴趣,就是没有数学思维&&哈哈,其实不是任何人一开始都会对数学感兴趣,而是在你的不断坚持和探索中发现数学的 乐趣!我坚信,兴趣是最好的老师,你特别喜欢玩魔兽,你就会千方百计的找寻通关的技巧,如果你特别喜欢数学,那么恭喜你,你的数学一定能够很棒的。所以, 大家都不要因为自己数学有点差就垂头丧气,觉得数学是十恶不赦的恶霸,其实数学的兴趣真的可以慢慢培养,只是你,刚开始不要拒绝他!应该有种数学虐我千百 遍,我待数学如初恋的气魄和坚守!
  数学,是一门严谨的学科,任何公式的推导,概念的定义,都有它的原因。比如三角函数的引出解决了古代天文学和航海的许多难题,概率的定义让我们 了解了世界的不确定性,也如同我在第一节推导的辅助角公式,也是有根有据。所以啊,你在做题时,一定不能拍脑门一想,怎么怎么着,这一般都是错的,唯有你 根据题目的条件,一步一步有理有据的推导,才能达到胜利的彼岸。而且,数学教给你的不仅仅是如何算题,更是教给你一种看待任何事物的态度。当我们碰到任何 事物都是,刚开始你对它一无所知(一道题),你开始了解它是干什么的(读题干,找条件),然后你要解决这个问题(解题),但是如果你觉得这个问题太难,肯 定就要化繁求简(由已知来推导未知),最终经过一番磨难,搞定这个问题(解出一道压轴题)!我也是从数学中,慢慢体会,慢慢思考,培养自己对待事物严谨的 态度,觉得数学给我带来了很多乐趣!
  当我讲完这些大道理时,还有一点我要提及,就是学习数学时,我们要有意识的培养自己独立思考和独立自学的能力。来到清华发 现,除了智商和刻苦程度的差距外,我和其他优秀同学很大的差距在于独立思考和自学的能力。而数学正是锻炼这种能力的最佳学科,你可不要浪费这个机会呢。无 论你现在高几,都要用批判的眼光看一道题,就是看答案时,一定要思考这个答案为什么这么来?这点十分关键,一定不要完全迷信答案,而是批判的接受他。由于 我们一直就是填鸭式教育来的,到了科研的时候就发现深受其害了&&对了,还有自学的能力,现在我发现很多人都是等着老师布置题,等着老师讲,这种等待是最 最不好的习惯!你不会的一定要自己想办法搞定去,自己学习,懒,永远是阻隔你和成功的一道坚固的城墙&&
  如何考试(试卷分析,拿高分)
  最后,我们还是回归主题,希望大家看了这个系列有所收获,能够考一个更高的分数,虽然很俗气,但是面对改变人生的高考,我们必须好好对待他,然后战胜他!
  如果你很了解考试,一般来说你应该知道试卷中试题的分步。拿高考新课标卷为例,高考卷纸中一定有60%的题目是基础题,这是一定的,也就是说, 只要正常学习,课后题都做了,90分问题不大。(有人在这里就会鄙视课后题了&&其实,课后题目是所有题目的根本,我当年高考140+时就是得益于一道课 后题,高考只改了数字,我轻松做出,但是很多人在那道概率上栽了跟头)也就是选择的前8-10个,填空前2个,选做题,还有前2-3个大题,一般都是送分 的,所以这些题目一定要稳拿。如果平时你还还做做训练,那么我觉得数学110-120你肯定没问题,也就是选择、填空各多对一个,大题在多对一道,20分 就又拿到手了,如果你解题很熟练,发挥又不错,我觉得130对你来说是目标,在往高了说,你就要对一些难题有自己的理解与思考了。
   总之,只有你对试题有了充分的理解,才能百战不殆,可是考试毕竟随机性很强,所以我们还要注意各个细节(除了之前所说)!用什么笔答题、带什么手表、做 题节奏是什么,你都要有细致的规划,最起码要准备好。这里着重要说的是做题的节奏,我当时考试一般做完所有题目就剩5-10分钟,然后看看姓名学号写的对 不对,有没有那道题拿不准什么的,做一下紧急修正。如果你有个很好地节奏,一般不会发挥的太失常,可是哪天我突然提前半小时写完卷纸,我就会发慌的&&对 了,为了得分,即使你有不会的题目,也要在最后时刻写满他,用满满的公式告诉老师,你给点分吧&&这些技巧有时真的会帮助很多的。
  好吧,这里我该说的都说了,思路还是有些混乱,希望你不要见怪,但是这都是我对于高中数学的思考,希望你能吸其精华,弃其糟粕吧,也希望大家能支持我们闻题鸟,我们这里有一大帮清华的师兄师姐在等着帮助你们,你们还犹豫什么呢?
  希望大家都能考上自己理想的学校!师兄在清华大学等你们!
推荐阅读:
只给高中生用的高考APP,家长请止步!
(挑大学?选专业,一步到位!)
高校分数线
专业分数线
<option value="
<option value="
<option value="
<option value="
<option value="
<option value="
<option value="
热门关键词
百科词条:
高考帮刷脸社区有趣的高中生社区
简介:北京高考考前志愿填报的政策已实施多年,在填报中,无论选择什么样的高校,最终都会落实到具体的专业上……
简介:在本书中作者通过两百余问答,简明扼要地介绍了许多考生和家长急于掌握的填报高考志愿的基础性、常识性知识……
简介:在高考志愿填报中,需要学习许多知识。为了帮助各位考生和家长从浅入深的了解高考志愿填报所需要的各种……
简介:近几年,香港大学的信息越来越受到关注,很多家长都开始考虑要将孩子送到香港去上大学,为了帮助大家更好的……
简介:一旦进入高三同学们就成为了准高考生,那么,让我们从最重要的一件事情做起吧。那就是熟懂高考,把握……
简介:对于广大的考生而言,如果能够通过参与心仪大学的自主招生获得加分,无疑就意味着向自己的奋斗目标大大地……
还可以这样关注我们
微信扫一扫
微信号:www_gaokao_com【转】怎样学习高等数学 | 怎样学高数小组 | 果壳网 科技有意思
6638人加入此小组
怎样学习高等数学高等数学的重要性和学习方法
一、高等数学的重要地位
我们可以作这样一个比喻:如果将整个数学比作一棵参天大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是“数学分析、高等代数、空间几何”。这个粗浅的比喻,形象地说明这“三门”课程在数学中的地位和作用。
我们现在学习的高等数学是由微积分学、空间解析几何、微分方程组成,而微积分学是数学分析中主干部分,而微分方程在科学技术中应用非常广泛, 无处不在。就微积分学,可以对它作如下评价。微积分的发明与其说是数学史上,不如说是人类科学史上的一件大事。它是由牛顿和莱布尼茨各自独立地创立的。
恩格斯指出:“在一切理论成就中,未必再有什么像十七世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。”
美国著名数学家柯朗指出:“微积分,或曰数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具…这门学科乃是一种憾人心灵的智力奋斗的结晶。”
数百年来,在大学的所有理工类、经济类专业中,微积分总是被列为一门重要的基础理论课。二、高等数学的教学特点
与初等数学相比,高等数学的课堂教育三个显著的差别:
① 课堂大,高等数学一般是若干个小班合班上课,课堂上不允许同学们提问。
② 时间长。大学课堂里的每一堂课一般都是100分钟,两节课连上,高等数学也不例外。
③ 进度快。由于高等数学的内容十分丰富,但学时又有限,因此每堂课不仅教学内容多,而且是全新的,教师讲课主要是讲重点、难点、疑点,讲概念、讲思路,举例较少。三、学习高等数学要有自信心
如何学好该课程,这是学习者首先要面对的问题。数学具有很强的抽象性,正是这一点往往成为一些学习者从小学到大学的心理障碍。有人因为高中数学学得不是很好,因此在面对高等数学时,学习起来缺乏自信,不相信自己有能力看懂、学通这门课程。尽管数学是一门深奥的课程,但它又是一门有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
对于每位刚踏入大学的同学来说,要从简单、基础的数学思维转到对高度抽象、复杂的高等数学的学习中确实有一定的难度,但似乎越难的学科越具有其独特的魅力,使你不断地掏出心思去学它、懂它、理解它、体会它,从而真正感到它内在的美。四、注意抓好学习的“五部曲”
①预习为提高听课效率,每次上课的前一天,对第二天教师要讲的内容应做预习,即先自学教材,重点阅读定义、定理和主要公式。这就可使自己听课时心里有底,不至于被动。也可以知道重点、难点和疑点所在,带着问题去听课。
② 听课应带着充沛的精力和预习中的疑问,报着获取新知识的浓厚兴趣,用心听教师是如何提出问题、分析问题和解决问题的。由于教师在课堂上将系统讲述教学内容,这就给学生提供了解决问题的最好机会。听课时,要紧紧围绕教学内容听课,听问题,听解决问题的思路和方法,听结论,听应用,听内容的来龙去脉。
复习学习 包括学与习两个方面。
学是为了获取知识,习是为了理解掌握知识。所以复习也是学习高数的重要环节之一。复习应先思索本节课的主要内容,抓住要领,提取精华,加深理解,强化记忆。复习应系统看书,并与老师的讲解和自己原来的理解相对照。然后找出精华和要点,着力在这些要点处下功夫,务必做到基本概念清楚、基本理论准确、基本思想方法学会、基本技能技巧熟练,为以后打下良好基础。一个单元学完以后要进行阶段复习,学期末要进行总复习,目的是将所学内容加深理解融会贯通,形成系统完整的知识结构,进而找出数学课程与其他课程的内在联系,将所学知识与思维方法应用于后继课程或实际问题中。
学数学不做题是万万不行的,认真及时完成作业也是一个十分重要的学习环节。值得指出的是,由于在中学养成的习惯,有相当多的同学不复习就做习题,自认为“只要我能做出来就行了”,但学习高等数学则不同:第一,通常习题内容并不包含全部内容;第二仅做习题尚不能完全建立起有关知识的系统结构;第三,不复习就做习题往往是做到哪儿,书、笔记翻到哪儿,结果不但慢而差,而且以后一旦脱离书本和笔记时,就会感到束手无策。
许多同学都会出现这种情况,上课听懂了,课后就做不出题来了。现在懂了,以后又不会做了。数学必须要做,懂了不一定会做。对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。
学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做。
⑤ 答疑答疑也是大学学习的一个重要环节。
同学们在学习中遇到疑问时(不管是听课、复习还是作业中的),都应及时请教老师,切勿“拖欠”。还可以向老师较系统地反映自己学习、思想、生活中的疑惑,以及对某些问题的见解,亦可以请教学习方法。
法国数学家笛卡尔指出:“没有正确的方法,即使有眼睛的博学者也会像瞎子一样盲目摸索”。学习必须讲究方法,但任何学习方法都不是惟一的。希望同学们能够尽快适应大学的学习生活掌握正确的学习方法,培养能力,提高综合素质。
+ 加入我的果篮
对啊对啊,就是不会做题,我有预习,也有认真听课的,可是就是不会做题,
(C)2016果壳网&&&&京ICP证100430号&&&&京网文[-239号&&&&新出发京零字东150005号&&&&&& 数学并不难,其实就是按规律做题而已。如果我们去问老师问题的时候,老师看了几眼,也会说这道题应用某某方法去做,好像想都不用想,让人惊叹。其实道理很简单,因为出......[]
&&&&&&高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去......[]
&&&&& 曾经是初中数学学习的佼佼者,然而由于不适应高中数学的教学,相当多的学生数学成绩不理想,出现严重的学习障碍,甚至对学习失去信心,导致两极分化。然而,值得庆幸的是,只要高一开始阶段我们发现及时,学生感悟及时,方法调整及时,一......[]
&&&&& 每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:学习不良者应该反省下列几个问题:(1)是否很少在学习前确定明确的目标......[]
&&&&& 现代考试学和经验表明,正确运用高考临场得分策略,不仅可以预防多种考试心理障碍或极不规范所造成的不合理丢分,而且能通过科学的检查方法建立神经联系,挖掘思维和知识潜能,考出最佳成绩,提高一至二个分数段。事实上,高考时......[]
&&&&& 进入高中,随着学习特点和学习任务的改变,许多同学都感到学好数学很吃力。为了帮助同学们提高数学成绩,特将学习高中数学需要注意的六个地方整理如下:1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小......[]
京公网安备号 | 网络视听许可证0109388号 |
| 版权所有1399人阅读
思维(22)
math(47)
程序开发(191)
I've been working for the past 15 months on repairing my rusty math skills, ever since I read a biography of Johnny von Neumann. I've read a huge stack of math books, and I have an even bigger stack of unread math books. And it's starting to come together.
自从我读了Johnny von Neumann的传记,我已经为弥补我糟糕的数学技能花了15个月了.读了大量的数学书籍,不过呢,&#20284;乎我还有更多没有读.当然我会接着做的.
Let me tell you about it.
现在我就来告诉你这些.
Conventional Wisdom Doesn't Add Up
告别传统观念
First: programmers don't think they need to know math. I I hardly know anyone who disagrees. Even programmers who were math majors tell me they don't really use math all that much! They say it's better to know about design patterns, object-oriented
methodologies, software tools, interface design, stuff like that.
首先:程序员不认为他们需要了解数学.我常常听到这样的话;我不知道还有没有不同意的.甚至于以前是主修数学的程序员也告诉我他们真的不是常常使用到数学!他们说 更重要的是要去了解设计模式,面向对象原理,软件工具,界面设计,以及一些其他类&#20284;的东西.
And you know what? They're absolutely right. You can be a good, solid, professional programmer without knowing much math.
你了解吗?他们完全正确.你不需要了解很多数学你就能做个很棒,很专业的程序员.
But hey, you don't really need to know how to program, either. Let's face it: there are a lot of professional programmers out there who realize they're not very good at it, and they still find ways to contribute.
但是呢,同时你也不是真的需要知道如何来编程.让我们面对这样一个事实:有很多专业的程序员发现他们并不是非常擅长数学,但他们仍然能在程序设计上做出贡献.
If you're suddenly feeling out of your depth, and everyone appears to be running circles around you, what are your options? Well, you might discover you're good at project management, or people management, or UI design,
or technical writing, or system administration, any number of other important things that &programmers& aren't necessarily any good at. You'll start filling those niches (because there's always more work to do), and as soon as you find something you're good
at, you'll probably migrate towards doing it full-time.
如果你突然觉得自己好烂,周围的人都远远的超过你,你会怎么想呢?好,你可能会发现 自己善于项目管理,或人事管理,或界面设计,或技术写作,或系统管理,还有许多其他程序员不必去精通的.你会开始堆积那些想法(因为工作永远干不完),当你发现一些你能掌握的东西时,你很可能会转移去全职的做这个工作.
In fact, I don't think you need to know anything, as long as you can stay alive somehow.
实际上,我认为有些东西你不需要了解,当前你还能够赖以生存的话.
So they're right: you don't need to know math, and you can get by for your entire life just fine without it.
所以他们是对的:你不需要了解数学,并且没有数学你也能过的很好.
But a few things I've learned recently might surprise you:
但是最近我学到一些东西可能会让你也感到惊喜:
Math is a lot easier to pick up after you know how to program. In fact, if you're a halfway decent programmer, you'll find it's almost a snap.
在你知道如何编程之后,数学更容易学会.实际上,如果你先学数学,然后半路出家做程序员的话,你会发现编程简直就是小菜一碟.
They teach math all wrong in school. Way, WAY wrong. If you teach yourself math the right way, you'll learn faster, remember it longer, and it'll be much more valuable to you as a programmer.
学校里教数学的方式都错了.仅仅是教学的方法错了,不是教数学本身错.如果你以正确的方式学习数学的话,你会学的更快,记住这点,对你,作为一个程序员来说很有价&#20540;.
Knowing even a little of the right kinds of math can enable you do write some pretty interesting programs that would otherwise be too hard. In other words, math is something you can pick up a little at a time, whenever
you have free time.
哪怕了解一点点相关的数学知识,就能让你写出可爱有趣的程序,否则会有些小难度.换句话讲,数学是可以慢慢学的,只要你有时间.
Nobody knows all of math, not even the best mathematicians. The field is constantly expanding, as people invent new formalisms to solve their own problems. And with any given math problem, just like in programming,
there's more than one way to do it. You can pick the one you like best.
没人能了解所有的数学,就是最棒的数学家也不是.当人们发明新的形式去解决自己的问题时,数学领域就不断的扩展.一些给出的数学问题,也正如编程,不止一种方法可以去解决他.你可以挑个你最喜欢的方式.
Math is... ummm, please don't tell anyone I I'll never get invited to another party as long as I live. But math, well... I'd better whisper this, so listen up: (it's actually kinda fun.)
数学是......嗯,请别告诉别人我说过这个哈;当然我也不指望谁能邀请我参加这样的派对,在我还活着的时候.但是,数学其实就是......我还是小声的说吧,听好了:(她其实就是一种乐趣啦!)
The Math You Learned (And Forgot)
你学到的数学(和你忘了的数学)
Here's the math I learned in school, as far as I can remember:
这儿是我能记得的在学校学到的数学:
Grade School: Numbers, Counting, Arithmetic, Pre-Algebra (&story problems&)
初中:数,数数,算术知识,初级代数(&带问题的小故事&)
High School: Algebra, Geometry, Advanced Algebra, Trigonometry, Pre-Calculus (conics and limits)
高中:代数,几何,高等代数,三角学,微积分先修课 (二次曲线论和极限)
College: Differential and Integral Calculus, Differential Equations, Linear Algebra, Probability and Statistics, Discrete Math
大学:微积分,微分公式,线性代数,概率和统计,离散数学
How'd they come up with that particular list for high school, anyway? It's more or less the same courses in most U.S. high schools. I think it's very similar in other countries, too, except that their students have
finished the list by the time they're nine years old. (Americans really kick butt at monster-truck competitions, though, so it's not a total loss.)
上面那个关于高中数学课程单子上所列的,怎么来着?美国高中几乎都是这样的课程设置.我认为其他国家也会很相&#20284;的,除了那些在9岁之前就掌握了这些课程的学生.(美国小孩同时却在热衷于玩魔&#39740;卡车竞赛,虽然如此,整个来说也算不上什么大损失.)
Algebra? Sure. No question. You need that. And a basic understanding of Cartesian geometry, too. Those are useful, and you can learn everything you need to know in a few months, give or take. But the rest of them?
I think an introduction to the basics might be useful, but spending a whole semester or year on them seems ridiculous.
代数?是的.没问题.你需要代数.和一些理解解析几何的知识.那些很有用,并且在以后 几个月里,你能学到一切你想要的,十拿九稳的.剩下的呢?我认为一个基本的介绍可能会有用,但是在这上面花整个学期或一年就显得很荒谬了.
I'm guessing the list was designed to prepare students for science and engineering professions. The math courses they teach in and high school don't help ready you for a career in programming, and the simple fact
is that the number of programming jobs is rapidly outpacing the demand for all other engineering roles.
我现在意识到那个书单列表原是设计来准备给那些以后要当科学家和工程师的学生的.他们在高中里所教的数学课程并不是为你的编程生涯做准备的,简单的事实是,多数的编程工作所需要的数学知识相比其他作为工程师角色的人所需要的数学增长的更快.
And even if you're planning on being a scientist or an engineer, I've found it's much easier to learn and appreciate geometry and trig after you understand what exactly math is — where it came from, where it's going,
what it's for. No need to dive right into memorizing geometric proofs and trigonometric identities. But that's exactly what high schools have you do.
即使你打算当一名科学家或者一名工程师,在你理解了什么是数学之后-- 数学它如何而来,如何而去,为何而生,我发现这更加容易去学习和欣赏几何学和三角学.不必去专研记住几何上的证明和三角恒等式,虽然那确实是高中学校要求你必须去做的.
So the list's no good anymore. Schools are teaching us the wrong math, and they're teaching it the wrong way. It's no wonder programmers think they don't need any math: most of the math we learned isn't helping us.
所以这样的书单列表不再有什么用了.学校教给我们的不是最合适的数学,并且方式也不对.不奇怪程序员认为他们不再需要数学:我们学的大部分数学知识对我们的工作没什么大的帮助.
The Math They Didn't Teach You
他们没有教给你的那部分数学
The math computer scientists use regularly, in real life, has very little overlap with the list above. For one thing, most of the math you learn in grade school and high school is continuous: that is, math on the
real numbers. For computer scientists, 95% or more of the interesting math is discrete: i.e., math on the integers.
在现实中,计算机科学家经常使用的数学,跟上面所列的数学仅有很小的重叠. 举个例子,你在中学里学的大部分数学是连续性的:也就是说,那是作为实数的数学.而对于计算机科学家来说,他们所感兴趣的95%也许更多的是离散性的:比如,关于整数的数学.
I'm going to talk in a future blog about some key differences between computer science, software engineering, programming, hacking, and other oft-confused disciplines. I got the basic framework for these (upcoming)
insights in no small part from Richard Gabriel's Patterns Of Software, so if you absolutely can't wait, go read that. It's a good book.
我打算在以后的博客中再谈一些有关计算机科学,软件工程,编程,搞些有趣的东东,和其他常常令人犯晕的训练.我已经从Richard Gabriel的 软件的模式 这本书中洞察到一个无关巨细的基本框架.如果你明显的等不下去的话,去读吧.是本不错的书.
For now, though, don't let the term &computer scientist& worry you. It sounds intimidating, but math isn't the exclusive purview of you can learn it all by yourself as a closet hacker, and be
just as good (or better) at it than they are. Your background as a programmer will help keep you focused on the practical side of things.
到现在为止,不要让&计算机科学家&这个词困扰到你.它听上去很可怕,其实数学不是计算机科学家所独有的领域,你也能作为一个黑客自学它,并且能做的和他们一样棒.你作为一个程序员的背景将会帮助你保持只关注那些有实践性的部分.
The math we use for modeling computational problems is, by and large, math on discrete integers. This is a generalization. If you're with me on today's blog, you'll be studying a little more math from now on than
you were planning to before today, and you'll discover places where the generalization isn't true. But by then, a short time from now, you'll be confident enough to ignore all this and teach yourself math the way you want to learn it.
我们用来建立计算模型的,大体上是离散数学.这是普遍的做法.如果正好今天你在看这篇博客,从现在起你正了解到更多的数学,并且你会认识到那样的普遍做法是不对的.从现在开始,你将有信心认为可以忽略这些,并以你想要的方式自学.
For programmers, the most useful branch of discrete math is probability theory. It's the first thing they should teach you after arithmetic, in grade school. What's probability theory, you ask? Why, it's counting.
How many ways are there to make a Full House in poker? Or a Royal Flush? Whenever you think of a question that starts with &how many ways...& or &what are the odds...&, it's a probability question. And as it happens (what are the odds?), it all just turns
out to be &simple& counting. It starts with flipping a coin and goes from there. It's definitely the first thing they should teach you in grade school after you learn Basic Calculator Usage.
对程序员来说,最有效的离散数学的分支是概率理论.这是你在学校学完基本算术后的紧接着的课.你会问,什么是概率理论呢?你就数啊,看有多少次出现满堂彩?或者有多次是同花顺.
不管你思考什么问题如果是以&多少种途径...&或&有多大几率的...&,那就是离散问题.当他发生时,都 转化成&简单&的计数.抛个硬币看看...? 毫无疑问在他们教你基本的计算用法后他们会教你概率理论.
I still have my discrete math textbook from college. It's a bit heavyweight for a third-grader (maybe), but it does cover a lot of the math we use in &everyday& computer science and computer engineering.
我还保存着大学里的离散数学课本.可能他只占了三分之一的课程,但是它却涵盖了我们几乎每天计算机编程工作大部分所用到的数学.
Oddly enough, my professor didn't tell me what it was for. Or I didn't hear. Or something. So I didn't pay very close attention: just enough to pass the course and forget this hateful topic forever, because I didn't
think it had anything to do with programming. That happened in quite a few of my comp sci courses in college, maybe as many as 25% of them. Poor me! I had to figure out what was important on my own, later, the hard way.
也真是够奇怪的,我的教授从没告诉我数学是用来干吗的.或者我也从来没有听说过.种种原因吧.所以我也从没有给以足够的注意:只是考试及&#26684;然后把他们都忘光,因为我不认为她还和编程有啥关系.事情变化是我在大学学完一些计算机科学的课程之后,也许是25%的课程.可怜啊!我必须弄明白什么对于自己来说是最重要的,然后再是向深度发展.
I think it would be nice if every math course spent a full week just introducing you to the subject, in the most fun way possible, so you know why the heck you're learning it. Heck, that's probably true for every
我想,如果每门数学课都花上整整一周的时间,而只是介绍让你如何入门的话,那将非常不错,这是最有意思的一种假设,那么你知道了你正学习的对象是哪种怪物了.怪物,大概对每一门课都合适.
Aside from probability and discrete math, there are a few other branches of mathematics that are potentially quite useful to programmers, and they usually don't teach them in school, unless you're a math minor. This
list includes:
除了概率和离散数学外,还有不少其他的数学分支,可能对程序员相当的有用,学校通常不会教你的,除非你的辅修科目是数学.这些数目列表包括:
Statistics, some of which is covered in my discrete math book, but it's really a discipline of its own. A pretty important one, too, but hopefully it needs no introduction.
《统计学》其中一些包括在我的离散数学课里,她的某些训练只限于她自身.自然也是相当重
要的,但想学的话不需要什么特别的入门.
Algebra and Linear Algebra (i.e., matrices). They should teach Linear Algebra immediately after algebra. It's pretty easy, and it's amazingly useful in all sorts of domains, including machine learning.
《代数和线性代数(比如,矩阵)》.他们会在教完代数后立即教线性代数.这也简单,这但相当多的领域非常有用,包括机器学习.
Mathematical Logic. I have a really cool totally unreadable book on the subject by Stephen Kleene, the inventor of the Kleene closure and, as far as I know, Kleenex. Don't read that one. I swear I've tried 20 times,
and never made it past chapter 2. If anyone has a recommendation for a better introduction to this field, please post a comment. It's obviously important stuff, though.
《数理逻辑》.我有相当完整的关于这门学科的书没有读,是Stephen Kleene写的,克林闭
包的发明者,我所知道的还有就是Kleenex.这个就不要读了.我发誓我已经尝试了不下20
次,却从没有读完第二章.如果哪位牛掰有什么更好的入门建议的话可以给我推荐.虽然,这
明显是非常重要的一部分.
Information Theory and Kolmogorov Complexity. Weird, eh? I bet none of your high schools taught either of those. They're both pretty new. Information theory is (veeery roughly) about data compression, and Kolmogorov
Complexity is (also roughly) about algorithmic complexity. I.e., how small you can you make it, how long will it take, how elegant can the program or data structure be, things like that. They're both fun, interesting and useful.
信息理论和柯尔莫戈洛夫复杂性理论.真不可思议,不是么?我敢打赌没哪个高中会教你其
中任何一门课程.她们都是新兴的学科.信息理论是(相当相当相当相当难懂)关于数据压缩,
柯尔莫戈洛夫复杂性理论是(同样非常难懂)关于算法复杂度的.也就是说,你要把它压缩的
尽量小,你所要花费的时间也就变的越长,同样的,程序或数据结构要变得多优雅也有同样
的代价.他们都很有趣,也很有用.
There are others, of course, and some of the fields overlap. But it just goes to show: the math that you'll find useful is pretty different from the math your school thought would be useful.
当然,也有其他的一些因素,某些领域是重复的.也拿来说说吧:你所发现有用的那部分数学,不同于那些你在学校里认为有用的数学.
What about calculus? Everyone teaches it, so it must be important, right?
那微积分呢?每个人都学它,所以它也一定是重要的,不对吗?
Well, calculus is actually pretty easy. Before I learned it, it sounded like one of the hardest things in the universe, right up there with quantum mechanics. Quantum mechanics is still beyond me, but calculus is
nothing. After I realized programmers can learn math quickly, I picked up my Calculus textbook and got through the entire thing in about a month, reading for an hour an evening.
好吧,微积分实际上是相当容易的.在我学习它之前,它听上去好像是世界上最难的一件事,好像和量子力学差不多.量子力学对我来说真的不是那么容易理解,但是微积分却不是.在我意识到程序员能够快速的学习数学时,我拿起一些微积分课本用一个月通读了整本书,一个晚上读一小时.
Calculus is all about continuums — rates of change, areas under curves, volumes of solids. Useful stuff, but the exact details involve a lot of memorization and a lot of tedium that you don't normally need as a programmer.
It's better to know the overall concepts and techniques, and go look up the details when you need them.
微积分都是关于连续统的 -- 变化的比率, 曲线的面积, 立体的体积.是些有用的东西,但是实际细节却包含大量的记忆量并且枯燥,作为一个程序员来说根本不需要这些. 更好的方法是从整体上了解那些概念和技术,在必要的时候再去查询那些细节.
Geometry, trigonometry, differentiation, integration, conic sections, differential equations, and their multidimensional and multivariate versions — these all have important applications. It's just that you don't
need to know them right this second. So it probably wasn't a great idea to make you spend years and years doing proofs and exercises with them, was it? If you're going to spend that much time studying math, it ought to be on topics that will remain relevant
to you for life.
几何,三角,微分,积分,圆锥曲线,微分方程,和他们的多维和多元 -- 这些都有重要的应用.不过这时候不需要你去了解它们.这大概不是个好注意让你年复一年的去做证明和它们的练习题,不是吗?如果你打算花大量的时间去学习数学,那也是和你生活相关的部分.
The Right Way To Learn Math
学习数学的正确方法
The right way to learn math is breadth-first, not depth-first. You need to survey the space, learn the names of things, figure out what's what.
正确学习数学的方法是广度优先,而非深度优先.你要考察的是整个数学世界,学习每个概念的名字,区分出什么是什么.
To put this in perspective, think about long division. Raise your hand if you can do long division on paper, right now. Hands? Anyone? I didn't think so.
具体的来看,考虑用长除法?如果你能在纸上做长整除,现在就举起你的手.会有人举手吗?至少我不这么认为.
I went back and looked at the long-division algorithm they teach in grade school, and damn if it isn't annoyingly complicated. It's deterministic, sure, but you never have to do it by hand, because it's easier to
find a calculator, even if you're stuck on a desert island without electricity. You'll still have a calculator in your watch, or your dental filling, or something,
回头看看在学校里学过的长除法,要是不让你觉得烦恼和愤怒才怪.当然,这是显然的,但你不一定要自己亲自去做,因为很容易用计算器来做,即使你不幸在一座没有电力的荒无人烟的小岛上.你起码还有个计算器,在的手表上,补牙的什么东东,或其他什么上面.
Why do they even teach it to you? Why do we feel vaguely guilty if we can't remember how to do it? It's not as if we need to know it anymore. And besides, if your life were on the line, you know you could perform
long division of any arbitrarily large numbers. Imagine you're imprisoned in some slimy 3rd-world dungeon, and the dictator there won't let you out until you've computed 3503391. How would you do it? Well, easy. You'd start subtracting the denominator
from the numerator, keeping a counter, until you couldn't subtract it anymore, and that'd be the remainder. If pressed, you could figure out a way to continue using repeated subtraction to estimate the remainder as decimal number (in this case, 0.,
or so my Emacs M-x calc tells me. Close enough!)
为什么他们还教你这些呢?为什么我们感到含混心虚讷,如果我们不能记住怎样去做?这不是好像我们需要再次知道她.除此以外,如果你命悬一线,你可以运用任意大的数来做长除法.相象你被囚禁在第三世界的地牢里,那儿的独裁者是不会放你出来的,除非你计算出3503391.你会怎么做呢?好吧,很容易.你开始从分子减去分母,直到不能再减只剩余数为止.若实在有压力,你可以想个办法,继续使用反复减,估算作为十进制的余数(这种情况下,0.,Emacs
M-x calc 告诉我的.够精确了! )
You could figure it out because you know that division is just repeated subtraction. The intuitive notion of division is deeply ingrained now.
你或许明白,除法就是反复的减.这样从直觉上对除法概念的理解就根深蒂固啦!
The right way to learn math is to ignore the actual algorithms and proofs, for the most part, and to start by learning a little bit about all the techniques: their names, what they're useful for, approximately how
they're computed, how long they've been around, (sometimes) who invented them, what their limitations are, and what they're related to. Think of it as a Liberal Arts degree in mathematics.
学习数学的正确方法是忽略实际的算法和证明,对于大部分情况来说, ...:他们的名字,他们的作用,他们计算的大致步骤, (有时是)谁发明了他们,发明了多久了,他们的缺陷是什么,和他们相关的有什么.把数学当文科来学.
Why? Because the first step to applying mathematics is problem identification. If you have a problem to solve, and you have no idea where to start, it could take you a long time to figure it out. But if you know it's
a differentiation problem, or a convex optimization problem, or a boolean logic problem, then you at least know where to start looking for the solution.
为什么呢?因为第一步反应在数学上的是问题的确定.如果你有一个问题去解决,并且假设你没有头绪如何开始, 这将花费你很长的时间来弄明白.但如果你知道这是个变异的问题,或者是一个凸优化问题,或者一个布尔的逻辑问题,然后你起码能知道从哪着手开始寻找解决方案.
There are lots and lots of mathematical techniques and entire sub-disciplines out there now. If you don't know what combinatorics is, not even the first clue, then you're not very likely to be able to recognize problems
for which the solution is found in combinatorics, are you?
现在有许许多多的数学技术和整个的学科分支.如果你不知道组合逻辑是什么,甚至连听都没听说过, 那么你是不可能意识到在组合逻辑中可以找到的解决答案的问题的,难道不是么?
But that's actually great news, because it's easier to read about the field and learn the names of everything than it is to learn the actual algorithms and methods for modeling and computing the results. In school
they teach you the Chain Rule, and you can memorize the formula and apply it on exams, but how many students really know what it &means&? So they're not going to be able to know to apply the formula when they run across a chain-rule problem in the wild. Ironically,
it's easier to know what it is than to memorize and apply the formula. The chain rule is just how to take the derivative of &chained& functions — meaning, function x() calls function g(), and you want the derivative of x(g()). Well, programmers know all about
we use them every day, so it's much easier to imagine the problem now than it was back in school.
但那实在是个大新闻哪,因为阅读这些领域,学习实际算法,建模和计算结果的方法,记住这些名字都是容易的.在学校里他们教你链式法则,你也能回忆起他们并能运用在考试题上,但有多少学生能真正的了解他们到底意味着什么呢? 所以当他们遇到变种的链式问题时,他们就不懂得如何运用公式了.让人感到讽刺的是,了解这是什么比记住如何运用公式更为容易.链式法则仅仅是如何对链式函数求导的意思,函数 x() 引用函数 g() ,你要求导 x(g())
.好了,程序员知道所有这些函数相关的;我们每天都使用他们,所以现在比过去在学校更加容易能够想象到问题所在.
Which is why I think they're teaching math wrong. They're doing it wrong in several ways. They're focusing on specializations that aren't proving empirically to be useful to most high-school graduates, and they're
teaching those specializations backwards. You should learn how to count, and how to program, before you learn how to take derivatives and perform integration.
这就是为什么我认为他们以错误的方式在教数学. 对大多数高中毕业生来说,他们专门教授的内容,不是可以靠经验来证明数学是如何如何有用的,他们教的那些恰恰是非经验式的内容.在你学习如何求导和做积分之前,你将要学习如何计数,怎样编程.
I think the best way to start learning math is to spend 15 to 30 minutes a day surfing in Wikipedia. It's filled with articles about thousands of little branches of mathematics. You start with pretty much any article
that seems interesting (e.g. String theory, say, or the Fourier transform, or Tensors, anything that strikes your fancy.) Start reading. If there's something you don't understand, click the link and read about it. Do this recursively until you get bored or
我认为学习数学最好的方法是每天花15到30分钟逛维基百科.那上面有数千数学分支的相关文章. 可以从一些你感兴趣的文章着手(比如,弦理论,或者,傅立叶变换,或者张量理论,就是能冲击你相象力的东西) 阅读.如果有什么你不理解的,就去了解那些链接.如此这般直到你累到不行为止.
Doing this will give you amazing perspective on mathematics, after a few months. You'll start seeing patterns — for instance, it seems that just about every branch of mathematics that involves a single variable has
a more complicated multivariate version, and the multivariate version is almost always represented by matrices of linear equations. At least for applied math. So Linear Algebra will gradually bump its way up your list, until you feel compelled to learn how
it actually works, and you'll download a PDF or buy a book, and you'll figure out enough to make you happy for a while.
几个月后,这么做会纵向扩展你的数学知识面.你会发现一些模式,好比,数学的每个分支看上去都包括了一个有着复杂的多元的变量,然后线性代数将会慢慢爬满你的书单列表,直到你强迫自己学会他实际上是怎样工作的,你要下载个电子书或买本书,直到你能从中找到乐趣.
With the Wikipedia approach, you'll also quickly find your way to the Foundations of Mathematics, the Rome to which all math roads lead. Math is almost always about formalizing our &common sense& about some domain,
so that we can deduce and/or prove new things about that domain. Metamathematics is the fascinating study of what the limits are on math itself: the intrinsic capabilities of our formal models, proofs, axiomatic systems, and representations of rules, information,
and computation.
凭借着维基百科,你也能快速的找到一条了解数学基本原理的途径,条条大道通罗马.在某些领域,数学几乎总是形式化我们的&常识&,所以我们能减少或证明那些领域里的新事物.对数学本身的研究就是无止境而且令人着迷的:构造形式模型本质的能力,证明,自明的系统,规则表示,信息,和计算.
One great thing that soon falls by the wayside is notation. Mathematical notation is the biggest turn-off to outsiders. Even if you're familiar with summations, integrals, polynomials, exponents, etc., if you see
a thick nest of them your inclination is probably to skip right over that sucker as one atomic operation.
符号是个很重大的但很快会令人放弃的东西.数学符号是关闭你通往另一个世界的符咒.即使你熟悉累加,积分,多项式,指数,等等,如果你看到一堆符号堆彻的异常复杂时,你就把他实现的功能简单的当成一个原子操作好了,不要深究太多.
However, by surveying math, trying to figure out what problems people have been trying to solve (and which of these might actually prove useful to you someday), you'll start seeing patterns in the notation, and it'll
stop being so alien-looking. For instance, a summation sign (capital-sigma) or product sign (capital-pi) will look scary at first, even if you know the basics. But if you're a programmer, you'll soon realize it's just a loop: one that sums values, one that
multiplies them. Integration is just a summation over a continuous section of a curve, so that won't stay scary for very long, either.
然而,从观察数学来说,尝试着明白人们正在试图解决的问题(那些已被证明了的问题某天也许会对你有实际用途), 你会开始在符号中看到相同的类型,你也不再排斥他们.比如,累加符号(大写符号-西&#26684;马)或者π(大写符号-pi,连乘符号)起初看上去让人心里没底,即时你了解了他们的基本原理.但如果你是个程序员,你会认识到他仅仅是个循环:一个累加&#20540;,一个累乘.积分是一段连续曲线的相加,所以那不会让你郁闷太久.
Once you're comfortable with the many branches of math, and the many different forms of notation, you're well on your way to knowing a lot of useful math. Because it won't be scary anymore, and next time you see a
math problem, it'll jump right out at you. &Hey,& you'll think, &I recognize that. That's a multiplication sign!&
一旦你习惯了数学的许多分支,和许多不同的符号的&#26684;式,你就走在了解许多数学知识的路上了.因为你不再害怕,你将会发现问题,其实他们会自动跳到你面前.&嗨,&你会思索,&我 了解这个.这是乘法符号!&
And then you should pull out the calculator. It might be a very fancy calculator such as R, Matlab, Mathematica, or a even C library for support vector machines. But almost all useful math is heavily automatable,
so you might as well get some automated servants to help you with it.
这样你就能扔掉计算器了.有一个充满相象的计算器系统比如 R,Matlab,Mathematica,甚或是支持向量机的C语言库.但是几乎所有实用的数学都已经高度自动化,所以你可能只需要找一些自动化工具帮助你做那些数学计算.
When Are Exercises Useful?
练习有啥用处呢?
After a year of doing part-time hobbyist catch-up math, you're going to be able to do a lot more math in your head, even if you never touch a pencil to a paper. For instance, you'll see polynomials all the time, so
eventually you'll pick up on the arithmetic of polynomials by osmosis. Same with logarithms, roots, transcendentals, and other fundamental mathematical representations that appear nearly everywhere.
在做了几年的业余数学爱好者之后,你打算做更多的数学,甚至你从没碰过铅笔和纸.比如, 你会一直看到多项式,所以最后你会耳濡目染的做起多项式的运算.同样的,对数,根,超越数,和其他到处出现的基本数学原理.
I'm still getting a feel for how many exercises I want to work through by hand. I'm finding that I like to be able to follow explanations (proofs) using a kind of &plausibility test& — for instance, if I see someone
dividing two polynomials, I kinda know what form the result should take, and if their result looks more or less right, then I'll take their word for it. But if I see the explanation doing something that I've never heard of, or that seems wrong or impossible,
then I'll dig in some more.
我还是生发了一种感觉,我要亲手做许多的练习题.我正在寻找一种能够跟着证明步骤的方法,比如使用一种&貌&#20284;可信的测试&,如果他们的结果看上去或多或少是对的,然后我就会拍拍屁股过去了.但如果我看到的那个证明我听都没听说过,亦或看上去是错的或不可能的情况,我就要挖掘更多的东西了.
That's a lot like reading programming-language source code, isn't it? You don't need to hand-simulate the entire program state as you read someone' if you know what approximate shape the computation will take,
you can simply check that their result makes sense. E.g. if the result should be a list, and they're returning a scalar, maybe you should dig in a little more. But normally you can scan source code almost at the speed you'd read English text (sometimes just
as fast), and you'll feel confident that you understand the overall shape and that you'll probably spot any truly egregious errors.
这很像读程序源代码,不是么?当你读某人的代码你不需要手动模拟整个程序状态;如果你知道计算过程大致会发生什么情形,你能靠理智推断出结果.举个例子,如果结果是个列表,他们返回一个标量,可能你会挖的更深一点.但正常情况下你能几乎是以你阅读英文文本的速度(有时仅仅是速度上)扫描源代码,并且你自信你理解了全部状态,与此同时,你也许会发现真正令你震惊的错误。
I think that's how mathematically-inclined people (mathematicians and hobbyists) read math papers, or any old papers containing a lot of math. They do the same sort of sanity checks you'd do when reading code, but
no more, unless they're intent on shooting the author down.
我认为那就是数学爱好者(数学家和真正的数学迷)怎样读数学论文的,或任何包含了许多数学的论文.他们做了同样的分类检查,正如在你读代码的时候所做的,但不只是这些,除非他们不想把作者的观点扳倒.
With that said, I still occasionally do math exercises. If something comes up again and again (like algebra and linear algebra), then I'll start doing some exercises to make sure I really understand it.
照那样说,我会偶尔做做数学练习.如果某些问题(比如代数和线性代数)又不停的跑过来,我就做些练习去确定我是真正的理解她了.
But I'd stress this: don't let exercises put you off the math. If an exercise (or even a particular article or chapter) is starting to bore you, move on. Jump around as much as you need to. Let your intuition guide
you. You'll learn much, much faster doing it that way, and your confidence will grow almost every day.
但我要强调这点:不要让练习使你分心.如果一个练习(甚或是一篇特别的文章或章节)开始让你烦恼,那就暂时丢一边继续前进.该跑路就坚决跑路.让你的直觉引导你.你会学的更多,更快,你的信心也会随之增长.
How Will This Help Me?
这些怎样才能帮到我?
Well, it might not — not right away. Certainly it will improve your logic it's a bit like doing exercise at the gym, and your overall mental fitness will get better if you're pushing yourself
a little every day.
也许不是--不能立刻奏效.但确实能帮助提升你的逻辑推理能力;好比是在体育馆做练习,如果你每天都做一点的话,你整体的能力会得到提升.
For me, I've noticed that a few domains I've always been interested in (including artificial intelligence, machine learning, natural language processing, and pattern recognition) use a lot of math. And as I've dug
in more deeply, I've found that the math they use is no more difficult than the sum total of the math I le it's just different math, for the most part. It's not harder. And learning it is enabling me to code (or use in my own code) neural
networks, genetic algorithms, bayesian classifiers, clustering algorithms, image matching, and other nifty things that will result in cool applications I can show off to my friends.
对我来说,我已经注意到一些我已经感兴趣的领域(包括人工智能,机器学习,自然语言处理,和模式识别)大量的使用到数学.如我已经挖的有点深度的领域,我已经发现他们使用的数学不再比我在中学的学到的数学还要更难;大部分来说仅仅是不同领域.而不是更难了,并且学习使我能写(或者是在我自己的代码里使用)神经网络,基因算法,贝页斯分类器,集群算法,图像识别,和其他时髦的东西,能产生很酷的应用.我常向我的朋友显宝.
And I've gradually gotten to the point where I no longer break out in a cold sweat when someone presents me with an article containing math notation: n-choose-k, differentials, matrices, determinants, infinite series,
etc. The notation is actually there to make it easier, but (like programming-language syntax) notation is always a bit tricky and daunting on first contact. Nowadays I can follow it better, and it no longer makes me feel like a plebian when I don't know it.
Because I know I can figure it out.
我已经渐渐意识到这点,当别人给我看一篇包含了数学符号的文章我不再像突然冒了一身冷汗:组合,微分,真&#20540;表,定列式,无限系列,等等.那些数学符号现在变得容易相处了,但(像编程语言的语法)一开始的话多少还是有点让人感到有些怪异.现在我能更好的理解了,当我一点不知道正在说什么时,也不再感到自己是个不懂数学的人了.因为我知道自己是能够弄明白的.
And that's a good thing.
And I'll keep getting better at this. I have lots of years left, and lots of books, and articles. Sometimes I'll spend a whole weekend reading a math book, and sometimes I'll go for weeks without thinking about it
even once. But like any hobby, if you simply trust that it will be interesting, and that it'll get easier with time, you can apply it as often or as little as you like and still get value out of it.
我会继续加油做的更好滴.我还有不少活头,有好多书和文章要读.有时我会花整个周末来读数学书,有时会数周都不再思索她.也和其他兴趣一样,如果你单纯的信任她你就会有兴趣,也能更容易的消磨时光,你可以经常一点点的尝试应用你觉得有趣的,并从中获益.
Math every day. What a great idea that turned out to be!
好好学习,天天数学!
(译者注:感谢一直指出我译的不当的朋友 nybon Greenlander programath jacksonsc ...)
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:2905871次
积分:28903
积分:28903
排名:第128名
原创:22篇
转载:1920篇
评论:411条
(37)(14)(28)(148)(78)(74)(36)(80)(90)(42)(139)(241)(117)(357)(181)(63)(56)(57)(5)(47)(1)(30)(23)

我要回帖

更多关于 高数学习方法 的文章

 

随机推荐