冲量、动量公式word里怎么写公式?

冲量的公式是什么?_百度知道
冲量的公式是什么?
我有更好的答案
I=ft(f为作用的力,t为作用时间)。P=mv是动量表达式
其他类似问题
为您推荐:
冲量的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁小木虫 --- 500万硕博科研人员喜爱的学术科研平台
冲量和动量作者: 收集于网络
冲量和动量
一、知识目标
  1、理解动量的概念,知道动量的定义,知道动量是矢量.
  2、理解冲量的概念,知道冲量的定义,知道冲量是矢量.
  3、知道动量的变化也是矢量,知道动量的运算服从矢量运算的规则.
二、能力目标
  1、会计算力的冲量和物体的动量.
  2、会正确计算一维的动量变化.
三、情感目标
  培养学生的创新思维能力,建立正确的认识论和方法论.
教学方法:加强直观教学,组织学生观察讨论.
课时安排:1课时
教学用具:小车、钩码、带有定滑轮的长木板、细绳、小球、挡板.
师生互动活动设计:
  1、教师通过演示实验展示所要讨论的问题.
  2、学生观察演示实验,分析寻找物体获得的速度与作用力和作用时间的关系.
1、冲量的概念
设问:对于一定质量的物体,力所产生的改变物体速度的效果,与作用力F和力的作用时间t有什么关系呢?(学生思考,教师演示实验)
演示实验:实验小车在不同拉力作用下获得同一速度所用的时间不同
结果:力大的作用时间短,力小的作用时间长.
定量讨论:质量为m的静止物体,在力作用下经时间t将获得多大的速度v?
  根据牛顿第二定律
,根据运动学公式
  变化公式,得:
结论:对一定质量的物体,力所产生的改变物体速度的效果,是由Ft这个物理量决定的.
  在物理学中,力F与力的作用时间t的积Ft叫做冲量.
说明:冲量是表示物体在力的作用下经历一段时间的积累的物理量,因此,力对物体有冲量作用须具备力和该力作用下的时间两个条件.换句话说,只要有力并且作用一段时间,那么该力对物体有冲量作用.可见,冲量是过程量.
  (1)定义式:
是力F的作用时间.
  (2)冲量是矢量.
  ①大小:
,式中的 F必须是恒力,因此,该公式只用于求恒力的冲量.
  ②方向:与F的方向一致.
  ③单位:
注意:求合冲量应按矢量合成法则计算.
  继续讨论表达式
得出动量的概念.
2、动量的概念
  动量的定义:在物理学中,物体的质量m和速度v的乘积mv叫做动量,动量常用字母p表示,即:
说明:动量是描述质点运动状态的物理量,它对应着某个时刻或某一位置,是一个状态量,此为动量的瞬时性.
(2)动量的单位
  冲量单位与动量单位相同,动量单位与力的单位不同:
  1kg·m/s=1N·s,1kg·m/
(3)动量的相对性
  因为物体的运动速度v与参考系的选取有关,所以物体的动量也与参考系的选取有关.通常选取地球为参考系.
(4)动量的矢量性
  动量是一个矢量,动量的方向与速度的方向相同,对质量一定的物体,只要物体速度的大小和方向有一个发生变化,我们就说物体的动量发生了变化.
  动量的合成服从矢量运算规则,要按平行四边形定则进行.如果物体的运动在同一直线上,而动量矢量在同一条直线上,在选定一个正方向后,动量的运算就可以化简为代数运算.
【典型例题1】——动量大小与速度的关系
  质量为60kg以1m/s速度步行的人和以800m/s速度飞行的质量为0.01kg的子弹,哪个动量大?
  解& 人
  即:人的动量大.
3、引入动量概念的目的
  上例中人与子弹的动量大小不同,那么动量的大小表达了怎样的不同的意义呢?可以考察一个力对物体作用时引起物体运动状态变化的特点,用不同的力作用于质量不同的物体上(阻力不计)
  经历不同的时间,得到不同的速度,各物理量列表如下
  从表中数据可知,只要力与作用时间的乘积相同,尽管物体运动过程中的加速度各不相同,末速度各不相同,但物体的质量与速度的乘积始终相等,即物体的动量相等.
  由此可见,质量和速度的乘积可以反映力在时间过程中的累积作用效果,也就是说,引入了动量的概念,就可以把力与力的作用时间联系起来,研究力在一段时间内的累积作用效果,从而比较方便的研究力在不同时间过程中的效果.
4、动量的变化
  末动量
与初动量p的矢量差,即
.动量是矢量,动量的变化量也是矢量.那么如何求动量的变化呢?我们来看下面的例题.
【典型例题2】————[课本例题]
  一个质量是0.1kg的钢球,以6 m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图).碰撞前后钢球的动量有没有变化?变化了多少?
  分析:动量是矢量,它的大小和(或)方向发生了变化,动量就发生了变化,碰撞前后虽然钢球速度大小没有变化,都是6m/s,但速度的方向发生了变化,动量的方向与速度的方向相同,动量的方向也发生了变化,所以钢球的动量发生了变化.
  解:取水平向右的方向为正方向,碰撞前钢球的速度
m/s,碰撞前钢球的动量为:
  碰撞后钢球的速度
m/s,碰撞后钢球的动量为
  碰撞前后钢球动量的变化为
  动量的变化
也是矢量,求得的数值为负值,表示
的方向与所取的正方向相反,
的方向水平向左。
结论:碰撞前后物体仍在同一条直线上运动,可先设一个正方向,末动量
和初动量p可据此用正、负值表示,则动量的变化
却可用代数方法求出.
设疑:若碰撞前后物体不在同一条直线上运动,那么动量的变化又如何求呢?
【典型例题3】————[课本思考与讨论]
思考与讨论:
  如图所示,一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度仍为2m/s,你能不能用作图法求出钢球动量变化的大小和方向?
  本书虽然不要求作这种计算,但是思考一下这个问题,会帮助你进一步认识动量的矢量性.
  分析:(如图)动量是矢量,动量方向与速度方向相同,我们可以用作图法(如图)根据平行四边形定则求动量变化
   &&&&&&&& &
kg·m/s,方向竖直向上.
结论:碰撞前后物体不在同一条直线上运动,可用作图法,根据平行四边形定则,以p和-p为邻边,作出平行四边形,其对角线长与
大小成正比,方向就是
5、总结、扩展
  (1)在物理学中,冲量的概念是反映力的时间积累效果,不难想像,一个水平恒力作用于放置于光滑水平面上的物体,其作用时间越长,速度的改变越大,表明力的累积效果越大.在物理学中,力和力的作用时间的乘积叫作力的冲量.
  (2)我们都有这样的体验,一个身高体壮的大人从身旁走过,不当心,碰了你一下,可能使你打个趔趄,甚至摔倒,但是,如果碰你的是个瘦小的小孩,尽管他走得跟那个大人一样快,打趔趄的甚至摔倒的可能不是你,却是他.可见,当我们考虑一个物体的运动效果时,只考虑运动速度是不够的,还必须把物体质量考虑进去,物理学上,把物体的质量和速度的乘积叫做物体的动量.动量是矢量,动量的运算服从矢量运算规则(即平行四边形定则).如果物体的运动在同一条直线上,即动量在同一条直线上时,在选定一个正方向后,动量的运算就可以简化为代数运算.
指的是动量的变化量,不要理解为动量,它也是矢量.它的方向可以跟初动量的方向相同(同一直线、动量增大);也可以跟初动量方向相反(同一直线,动量减小);也可以跟初动量的方向成一角度,其运算规则为矢量的运算.
  6、布置作业
  7、板书设计
冲量和动量
  1、定义:力F和力的作用时间t的乘积.
  2、表达式:
  3、单位:牛·秒;符号:N·s.
  4、矢量性:方向由力的方向决定.
  1、定义:物体的质量m 和速度v的乘积.
  2、表达式:
  3、单位:千克·米/秒;符号:kg·m/s.
  4、矢量性:方向与速度方向相同.
三、动量的变化
  1、定义、末态动量与初态动量的矢量差.
  2、表达式&
3、运算规则:平行四边形定则.
与p共线,用代数式运算.
与p不共线,用矢量式运算.
本栏目更多导读:
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。欢迎协助我们监督管理,共同维护互联网健康,如果您对该内容有异议,请立即发邮件到
联系通知管理员,也可以通过QQ周知,我们的QQ号为:8835100
我们保证在1个工作日内给予处理和答复,谢谢您的监督。冲量、动量公式怎么写?_百度作业帮
冲量、动量公式怎么写?
冲量、动量公式怎么写?
都适用,变力或曲线,只是复杂些公式是m(v_末-v_初)=P_末-P_初=冲量值等于动量的变化值..只有当一个系统不受外力(只有内力)的时候才能用
冲量就是力在时间上的积累,公式=Ft,动量是质量在速度上的积累,公式=Mv您的举报已经提交成功,我们将尽快处理,谢谢!
冲量是推进力力的平均值与它的作用时间相乘的结果。
动量是冲量一种衡量物体运动量度的单位,等于运动物体的质量和速度的乘积。
大家还关注
(window.slotbydup=window.slotbydup || []).push({
id: '2081942',
container: s,
size: '1000,60',
display: 'inlay-fix'答案:合外力,动量变化;原因,合外力
请在这里输入关键词:
请选择年级高一高二高三请输入相应的习题集名称(选填):
科目:高中物理
一列火车质量1000t,由静止开始以恒定的功率沿平直铁轨运动,经过2min前进2700m时恰好达到最大速度.设火车所受阻力恒为车重的0.05倍,求火车的最大速度和恒定的功率?取g=10m/s2.解:设最大速度为vm,火车的平均牵引力为,由动量定理和动能定理得:(-f)t=mvm&&&&&&&& (1)(-f)s=mv2&&&&&&&&(2)联立(1)、(2)解得:vm==45m/s,P=fvm=22.5KW试指出以上求解过程是否正确.若正确,请给出理由;若有问题,请给出正确的解答.
科目:高中物理
(1)试在下列简化情况下,由牛顿定律和运动学公式导出动量定理表达式.一个运动质点只受一个恒力作用,沿直线运动.要求:说明推导过程中每步的根据以及最后结果中各项的意义.(2)质量为500kg的汽艇在静水中以10m/s的速度匀速航行,艇所受阻力与航行速度满足关系:f=kv,其中k=100N?s/m.假设水被螺旋桨向后推出的速度均为8m/s,那么螺旋桨每秒向后推出的水的质量约为多少?
科目:高中物理
(1)试在下述简化情况下,由牛顿定律和运动学公式导出动量定理表达式:一个运动质点只受到一个恒力作用,沿直线运动.要求说明推导过程中每步的根据,以及最后结果中各项的意义.(2)人们常说“滴水穿石”,请你根据下面所提供的信息,估算水对石头的冲击力的大小.一瀑布落差为h=20m,水流量为Q=0.10m3/s,水的密度ρ=1.O×l03kg/m3,水在最高点和落至石头上后的速度都认为是零.(落在石头上的水立即流走,在讨论石头对水作用时可以不考虑水的重力,g取10m/s2)
科目:高中物理
题型:阅读理解
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。规定向右为正向,将矢量运算化为代数运算。车第一次碰墙后,车速变为-v ,然后与速度仍为v的铁块作用,动量守恒,作用完毕后,共同速度v1&=&&=&&,因方向为正,必朝墙运动。(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S =&,反向加速的位移S′=&,其中a = a1&=&,故S′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v1&。车第二次碰墙后,车速变为-v1&,然后与速度仍为v1的铁块作用,动量守恒,作用完毕后,共同速度v2&=&&=&&=&,因方向为正,必朝墙运动。车第三次碰墙,……共同速度v3&=&&=&,朝墙运动。……以此类推,我们可以概括铁块和车的运动情况——铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。1、全程能量关系:对铁块和车系统,-ΔEk&=ΔE内&,且,ΔE内&= f滑&S相&,即:(m + M)v2&= μmg·S相&代入数字得:S相&= 5.4 m2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故第一次:S1&=&第二次:S2&=&&=&第三次:S3&=&&=&……n次碰墙的总路程是:ΣS = 2( S1&+ S2&+ S3&+ … + Sn&)=&( 1 +&&+&&+ … +&&)& =&( 1 +&&+&&+ … +&&)碰墙次数n→∞,代入其它数字,得:ΣS = 4.05 m(学生活动)质量为M 、程度为L的木板固定在光滑水平面上,另一个质量为m的滑块以水平初速v0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?解:由第一过程,得滑动摩擦力f =&&。第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为m&=( m + M )vm&-&( m + M )v2&= fL解以上三式即可。答:=&v0&。第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第七、第八章的部分例题和习题。

我要回帖

更多关于 word里怎么写公式 的文章

 

随机推荐