lm331,做F/V电路,怎么管脚被烙铁烫一下,就有推挽输出电路?(几毫伏)

数显电子秤设计原理图谁可以帮帮我 主要是用LM331 V/F转换与单片机怎么链接_百度知道
数显电子秤设计原理图谁可以帮帮我 主要是用LM331 V/F转换与单片机怎么链接
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
kangdengzhi
kangdengzhi
电压转换成频率,建议频率输出端与单片机的计数器端连接,如51的T0,T1,P3.4,P3.5
为你推荐:
其他类似问题
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。运算放大器能缩小电压吗?我这里有LM331,要把电压为十几伏的电压变成0到2.5V怎么办_百度知道
运算放大器能缩小电压吗?我这里有LM331,要把电压为十几伏的电压变成0到2.5V怎么办
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
wanwenhao1
wanwenhao1
采纳数:2717
获赞数:13761
使用运放做成减法器电路,可以降低电压。如附图:&
运算表达式呢
图上不是已经有运算表达式了吗,当R1=R2=R3=Rf&时,有&U0=UI2—UI1&如果这些电阻不等则计算公式为:&如果你降低电压是成比例的,譬如0-10V的信号电压降低为0-2.5V,那就使用电阻分压即可最简单了。注意计算分压电阻时,需要考虑采样此信号设备的输入内阻并联在分压电阻后的影响。分压电阻的选择在满足信号电压输出阻抗的情况下,尽量小一点。这样采样电路的内阻影响相对就会小一些。
采纳数:31591
获赞数:180237
用三端稳压器就是了。或者……用DC-DC变换器
那个电压是信号啊,稳压器稳压了信号不就没了
你说的是输入信号的幅值是0~10V,在此输入条件下,想控制输出信号的幅值为0~2.5V?很简单,加一个钳位电路就行了。
前位电路是什么呢
百度一下就行了。 或者……调节运放的放大倍数,使输出是输入的1/4。
本回答被网友采纳
采纳数:30184
获赞数:48948
如果十几伏的电压也是交流的(输入输出都是交流)用电阻分压不就行了?干嘛要那么麻烦?!
总工程师助理
总工程师助理
采纳数:5267
获赞数:7467
干吗搞这么复杂?用一个变压器或直接用电阻分压(电位器更好,输出幅度可连续调节,比如音量电位器)不就能得到波形完全一样而幅度变小的信号了吗?
来自科学教育类芝麻团
采纳数:412
获赞数:1341
参与团队:
看看图片:
其他2条回答
为你推荐:
其他类似问题
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。> 问题详情
LM331在V/F变换器中是常用的一种芯片,其实用电路如图L11-12-1所示,试说明电路中各元件的作用,当vI为0~10V时
悬赏:0&答案豆
提问人:匿名网友
发布时间:
LM331在V/F变换器中是常用的一种芯片,其实用电路如图L11-12-1所示,试说明电路中各元件的作用,当vI为0~10V时输出的频率范围。
为您推荐的考试题库
您可能感兴趣的试题
1在LC正弦波振荡电路中,不用通用型集成运算放大器作放大电路的原因是其上限截止频率太低,难以产生高频振荡信号。
)2当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
)3一般情况下,电压比较器的集成运算放大器工作在开环状态,或者引入了正反馈。
我有更好的答案
请先输入下方的验证码查看最佳答案
图形验证:
验证码提交中……
每天只需0.4元
选择支付方式
支付宝付款
郑重提醒:支付后,系统自动为您完成注册
请使用微信扫码支付(元)
支付后,系统自动为您完成注册
遇到问题请联系在线客服QQ:
恭喜你被选中为
扫一扫-免费查看答案!
请您不要关闭此页面,支付完成后点击支付完成按钮
遇到问题请联系在线客服QQ:
恭喜您!升级VIP会员成功
提示:请截图保存您的账号信息,以方便日后登录使用。
常用邮箱:
用于找回密码
确认密码:LM331在AD转换电路中的应用
LM331在AD转换电路中的应用
作者:赫飞 汪玉凤 刘雨刚 石平
引言: &&& 数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的转换来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把信号转换为信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。它与AD574等电路相比,具有接线简单,价格低廉,转换精度高等特点,而且LM331芯片在转换过程中不需要软件程序驱动,这与AD574等需要软件程序控制的A/D转换电路相比,使用起来方便了许多。 一.&芯片简介&&& LM331是美国NS公司生产的性能价格比比较高的集成芯片。它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率、长时间积分器以及其它相关的器件。LM331为双列直插式8引脚芯片,其引脚框图如图1所示。&&&图1 LM331逻辑框图 LM331 各引脚功能说明如下:脚1 为脉冲输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同;脚2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大;脚3 为脉冲电压输出端,&&& OC 门结构,输出脉冲宽度及同单稳态,不用时可悬空或接地;脚4 为地;脚5 为单稳态外接定时时间常数RC ;脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度T脚7 为比较器基准电压,用于设置输入脉冲的有效触发高低;脚8 为V , 正常工作电压范围为4~40V。线性度好, 最大非线性小于0. 01 % , 工作频率低到0. 1 时尚有较好的线性;变换精度高数字分辨率可达12 位; 外接电路简单, 只需接入几个外部元件就可方便构成V/ F 或F/ V 等变换电路,并且容易保证转换精度。&图2电压-频率转换电路& && 图2是我们常用的一种压频转换电路,按照图2设计电路, LM331采用单电源供电,电源电压VCC,模拟信号 的输入范围-VCC~0V,为1~500KHZ,非线性低于0.01%。模拟信号 经积分器LF356积分处理后,在INPUT端变成与输入电压 成正比的稳定电流输入,通过LM331芯片进行V/F转换后,变成与电压成正比的频率信号,FOUT端输出的频率信号送到计算机的计数/定时端口,计算机对频率信号进行采集、处理、存储。从而实现模拟信号到数字信号的转换。由于LM331的转换线性度直接影响转换结果的准确性,而通常引起V/F转换产生非线性误差的原因是引脚1的输出,它使输出电流随输入电压的变化而变化,因而影响转换精度,为克服此缺点,高精度V/F转换器在1脚和7脚间加入了一个积分器,这个积分器是由常规运放LF356和积分C4构成的反积分器。加上积分电路后,由于电流源(1引脚)总是保持地电位,电压不随 或FOUT变化,因此有很高的线性度。2.频率-数字信号变换&&&&&&&&&& 图3 LM331实现A/D转换框架图&&&& 图3中,模拟信号经压/频转换器LM331,把电压信号转化为脉冲信号,脉冲信号送到计算机的计数/定时端口,有计算机对频率信号进行接收、处理、储存。由于压/频转换器LM331的压/频转换关系成线性,所以我们可以根据采集到频率数据知道模拟信号的大小,从而实现了模拟信号到数字信号的转换.频率计数器、定时器可以使用计算机的计数/定时端口,通过软件编程实现。基准频率,数据处理也是通过软件编程实现,数据可以储存到内部数据或外部数据存储器中。三. 计算机软件编程&&& LM331要实现A/D转换,需与计数器配合使用.LM331的输出端FOUT与计数器T0端口连接,定时器T1用于定时,由公式f=D/T,D是计数值;T是计数时间.计数时间T由定时器T1确定,通过计算得出FOUT,然后进行数据处理与存储.简要程序及说明如下:&&& 主程序MAIN设置定时器T0、T1工作方式分别为16位计数和定时,并置初值,T1开中断,T1的定时时间根据转换精度需要而定,如果取转换精度为12位,最高频率为100KHZ,计满量程时间为FFFH/100K=8.192ms.单片机采用12MHZ时,机器=1&s,定时初值为&&& 调DATA子程序主要是进行数据处理并存储,得到的数据就是12位A/D转换数据 ,改变定时初值,可调节A/D转换位,如13位,14位等.结论:&&& 运用LM331实现A/D转换, 具有电路简单,成本低,测量精度高并且转换位数可调的特点,在实际工作之前,对电路器件参数进行调校,调校之后,系统稳定性好.与AD574等电路相比,价格便宜几倍。
&&&&&往下看有更多相关资料
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670& & &&)lm331频率电压转换电路详解-电子发烧友网
现阶段实现宽频频率/电压转换电路的方法是直接利用宽频频率/电压转换芯片,例如ADI公司生产的基于&S&D技术的频率/电压转换芯片AD7740、AD7741、AD652、AD654、AD650及ADVFC32等。但是这些芯片构成的频率/电压转换电路的允许频率范围最大也只有3MHz左右,而且芯片的成本较高,构成的电路结构比较复杂,功耗较大。本文提出了一种利用分频及放大原理对LM331的频率转换范围进行扩展的方法,设计了一种宽频频率/电压转换电路,解决了一般频率/电压转换芯片转换频率低的问题。
1、硬件电路设计
1.1、系统框图
基于LM331的宽频频率/电压转换电路的系统结构框图如图1所示,它由主控电路、分频电路、频率电压转换电路、放大电路四部分组成。主控电路采用AT89S52单片机作为主控芯片;分频电路采用高速双D型触发器、十进制同步加/减计数器、双4选1数据选择器来实现;频率/电压转换电路由频率/电压转换芯片LM331及一些电阻电容构成;放大电路由运算放大器、双向模拟开关及电阻网络来实现。
为了实现宽频频率电压转换,首先将整形后待处理信号经400分频后,由AT89S52单片机测量信号频率并选择合适的分频比,控制分频电路重新对整形后的信号进行分频;同时单片机控制放大电路产生相应放大倍数的信号,重新分频后的信号经过频率/电压转换电路转换为电压信号,最后经放大电路放大相应的倍数后输出以完成宽频频率/电压转换。
1.2、基于LM331的宽频频率电压转换电路的设计
1.2.1、频率/电压转换
频率/电压转换就是把输入的脉冲信号转换为电压信号输出的一种电路。输出的电压与输入的脉冲频率成线性关系,并可通过测量其输出端的电压值来间接测量输入的脉冲频率。频率/电压转换电路由专用的频率/电压转换芯片LM331及少量的电阻电容组成。
LM331外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。LM331构成的频率/电压转换电路如图2所示,经放大整形后的信号Fi1经过R1、C3组成的微分电路加到LM331的6脚。当Fi1的下降沿到来时经过微分电路将在6脚产生负向尖峰脉冲,当负向尖峰脉冲大于VCC/3时LM331的内部触发器将置位,其内部的电流源对电容CL充电,同时电源VCC通过Rt对电容Ct充电。当CL上的电压大于2VCC/3时,LM331内部的触发器复位,CL通过RL放电,同时定时电容Ct迅速放电,完成一次充放电过程。此后,每经过一次充放电过程电路重复上面的工作过程,这样就实现了频率/电压的转换。LM331输出的电压Vf1与输入信号频率Fi1的关系可表示为:
1.2.2、分频电路的设计
由于LM331最大电压转换频率为100kHz,要处理频率较高的信号,首先需要对放大整形后的信号进行分频。分频电路如图3所示。分频电路主要是由高速双D型触发器74ALS74、计数器74ALS168和数据选择器74ALS153组成。当待处理信号的频率较高时,先将其400分频后送入主控电路测量频率并选择合适的分频比,进行不分频、4分频、40分频或400分频。这时分频电路设计的脉冲占空比为50%,满足频率/电压转换电路要求输入脉冲信号的占空比必须为30%以上的要求。
1.2.3、程控放大电路的设计
待处理信号经分频电路分频并完成频率/电压转换后,需程控放大电路按照相应的分频比对电压信号进行放大。程控放大电路如图4所示,该电路由运算放大器OP37、4双向模拟开关CD4066及电阻网络构成。主控芯片AT89S52单片机通过写不同的控制字控制模拟开关选择合适的电阻网络,从而调节放大电路的放大倍数。
该电路的特点是把电阻网络及模拟开关接在运算放大器的反相输入端之前,使得模拟开关的电阻对放大倍数几乎没有影响。在运算放大器的1引脚和8引脚接Rp用于实现运算放大器的调零。该电路可以实现不放大、放大4倍、放大40倍、放大400倍。
2、软件设计
程序流程图如图5所示,系统上电完成器件初始化后,等待启动键K2按下。当K2键按下时启动频率测量,当待测频率变化时单片机进行参数计算并通过P1口输出合适的控制字,控制分频电路和放大电路选择对应的分频比和放大倍数对信号进行相应的处理。当结束键K3按下时系统停止工作,否则重复前面的步骤。
当单片机测得信号的频率在75kHz~10kHz之间时,信号将被400分频后输入频率/电压转换电路,同时放大电路会选择放大400倍的档位;当测得信号的频率在10kHz~4kHz之间时,信号将被40分频后输入频率/电压转换电路,同时放大电路会选择放大40倍的档位;当测得信号的频率在4kHz~250Hz之间时,信号将被4分频后输入频率/电压转换电路,同时放大电路会选择放大4倍的档位;当测得信号的频率小于250Hz时,待处理信号不分频直接输入频率/电压转换电路,同时放大电路变成了电压跟随器,不对待处理信号进行放大。
3、实验结果
3.1、低频频率/电压转换电路实测结果
在实验中当信号频率较低时,可将整形后的信号直接加入频率电压转换电路,而不经过分频电路。直接选取Rt=910&O,RL=19k&O,Rs=14.5k&O,Ct=0.01&F,当输入信号的频率小于100kHz时,测得的实验结果如表1所示。
3.2、宽频频率/电压转换电路实测结果
在实验中,选取Rt=910&O,RL=190&O,Rs=14.5k&O,Ct=0.01&F。当输入信号频率范围在100kHz~30MHz之间时,测得的实验结果如表2所示。
比较分析以上结果可知,利用分频电路和放大电路可以实现基于LM331的频率/电压转换电路频率范围的扩展,有效地解决了现有频率/电压转换芯片转换频率不高的问题。但是该电路在信号频率较小时,转换后的电压误差较大,这可能是由于频率/电压变换系数较小的原因。
本文设计实现的基于LM331的宽频频率/电压转换电路利用由高速双D型触发器74ALS74、计数器74ALS168和数据选择器74ALS153组成的分频电路以及由运算放大器OP37、4双向模拟开关CD4066和电阻网络构成的放大电路对LM331的频率/电压转换范围进行了扩展。设计的宽频频率/电压转换电路所允许输入信号频率范围为1kHz~30MHz,电路结构简单,成本低,功耗小,可以应用于传感器测量、电机的转速测量、自适应信号处理等领域,具有良好的应用前景。
文章来源栏目
加载更多评论
后参与评论

我要回帖

更多关于 推挽输出电路 的文章

 

随机推荐