什么是核心引物二聚体

小木虫 --- 500万硕博科研人员喜爱的学术科研平台
&&查看话题
常用生物学软件简介
1. Oligo 6是目前使用最为广泛的一款引物设计软件,除了可以简单快捷地完成各种引物和探针的设计与分析外,还具有很多其他同类软件所不具有的高级功能: a) 已知一个PCR引物的序列,搜寻和设计另一个引物的序列。b) 按照不同的物种对MM子的偏好性设计简并引物。 c) 对环型DNA片段,设计反向PCR引物。d) 设计多重PCR引物。e) 为LCR反应设计探针,以检测某个突变是否出现。f) 分析和评价用其他途径设计的引物是否合理。 g) 同源序列查找,并根据同源区设计引物。h) 增强了的引物/探针搜寻手段。设计引物过程中,可以“Lock”每个参数,如Tm值范围和引物3’端的稳定性等。 i) 以多种形式存储结果;支持多用户,每个用户可保存自己的特殊设置。 网址: http://www.oligo.net/
2. Vector NTI Suite是一套功能最全,而且界面最美观,最友好的分子生物学应用软件包。主要包括四个大型软件,它们分别可以对DNA、RNA、蛋白质分子进行各种分析和操作。 Vector⑴ NTI:作为Vector NTI Suite的核心组成部分,它可以在生物研究的全过程中提供数据组织和序列编辑的软件支持。Vector NTI 是以一种窗口形式,且支持项目组织的数据库来完成这一功能的;通过这个数据库,可以保存和组织大部分的实验数据,比如:基因结构、载体、序列片断、引物、蛋白质、多肽、电泳Markers和限制性内切酶等。实际上,该数据库还支持对Vector NTI Suite中各种小型的绘图和结果展示工具的管理。Vector NTI 可以按照用户要求设计克隆策略。用户只需提供克隆载体,外源片断序列,明确载体克隆的大致位置或酶切位点,其它工作由软件完成。设计结果以图文形式输出到屏幕;最后根据客户定制的条件进行模拟电泳。Vector NTI 还具有强大的设计和评估PCR引物、测序引物和杂交探针功能。 BioPlot⑵:BioPlot是一个对蛋白质和核酸序列进行各种理化特性分析的综合性工具,它是一种方便的桌面程序。和其他程序不同的是,BioPlot可以绘制50种以上预定制的蛋白质特征图谱,如疏水性和抗原性;并将序列与特征图谱和活性序列区域一一对应。BioPlot还可以对核酸序列进行8种不同类型的分析,如:退火温度、自由能和GC含量等。 AlignX⑶:AlignX可以对多个蛋白质或核酸序列进行同源比较,以寻找不同序列之间的同源区域或相似性很高序列中的不同碱基,并绘制进化树;为下一步设计PCR引物、探针及研究系统发育提供基础。AlignX可以识别所有标准TXT格式,如FASTA、GeneBank、EMBL、SWISS-PROT、GenPept和ASCII Text。 ContigExpress⑷:Contig Express是用来对多个小核酸片段进行拼接而形成连续的长序列。这些小片段可以是Text序列,也可以是直
接从自动测序仪得到的测序图。它用同一个浏览窗口来组织序列片段和拼接结果,同时还有一个由多个子窗口组成的窗口将序列和它们的特性测序图及拼接示意图分别对应。拼接的结果可以直接保存成GeneBank、EMBL或FASTA文件。 Vector NTI Suite⑸其他功能:支持多用户。提供PubMed/Entrez-Search、Blast Search、Blast Viewer和3D-Mol(用来看PDB文件)等在线工具。 网址: /solutions/vectornti/index.html
3. DNAStar 是一款基于Windows和Macintosh平台的序列分析软件,特点是操作简单,功能强大。主要由7部分组成: EditSeq①:用来将DNA或蛋白质序列的数据输入计算机的工具,同时还具有编辑已有序列的功能。EditSeq可识别FASTA, Genbank, ABI, GCG以及ASCII Text文件,同时也支持键盘输入和直接从自动序列分析图谱上读取序列。 ②MapDraw:酶切图谱分析,克隆实验设计,分析及处理实验结果等。同时还具有绘制质粒图谱的功能。 GeneQuest③:帮助查找和注释DNA序列中的基因和其他特征序列,包括ORFs,剪接位点,转录因子结合位点,重复序列和酶切位点等。 MegAlign④:对DNA或蛋白质序列进行同源比较,有六种不同的对准算法供用户选择。在同源比较的同时,能很快输出进化树和进化距离等数据。 Protean⑤:分析和预测蛋白质结构,提供各种分析方法并以图形的格式输出结果,显示蛋白质分子的各种理化特性以及例如抗原决定族等功能区的预测功能。 PrimerSelect⑥:设计PCR引物、测序引物和探针。 SeqMan II⑦:多序列拼接。最多支持64000条序列的同时拼接。在拼接前可以对序列进行修正,对自动测序的序列结果可除去污染序列或载体序列。 网址: /
4. GeneDoc是蛋白质和DNA序列同源比较的辅助软件,它不能对多个序列以某种算法进行自动比较,但是能对其他软件的比较结果进一步处理。如编辑和修改,用亮丽的色彩来区分相互间序列的同源性,并输出各种漂亮的图形格式;还进一步可以报告为进化树的格式。 网址: http://www.psc.edu/biomed/genedoc/
5. DNAman是一个专业序列分析软件包,与Windows95/98Me/NT/2000完美兼容,功能强大且容易上手;更难能可贵的是,它提供了目前最好的质粒作图及克隆路线绘制组件。DNAman的功能包括:DNA和蛋白质序列的编辑;DNA序列文件格式的转换;多个序列(包括DNA和蛋白质序列)的同源比较以及对比较结果的编辑分析等;进化树的绘制和分析;DNA或蛋白质序列的点阵比较;DNA序列的拼接及分析;实现与INTERNET的无缝连接,直接完成Blast等工作;Motif查找;限制性酶谱分析;根据不同MM子表
完成DNA-蛋白质的翻译;蛋白质理化特性分析及二级结构预测;PCR引物及探针的设计和评估;绘制高质量的质粒图谱和克隆路线图。 网址: /pc/framepc.html
6. Winplas 2.7一般用来绘制发表质量的质粒图,结果用作论文或教材等的质粒插图。其特性包括:可以根据已知序列自动生成质粒图,也可以根据要求直接绘制质粒图;可读入目前大部分的序列格式文件,直接引入序列信息;绘图功能包括:位点标签说明、任意位置文字插入、生成彩图、线性或环形序列绘制;结果可输出到剪贴板从而插入文档,并可输出为各种图像文件。 网址: /winplas.html
7. Reference Manager是一个搜索和管献的工具软件,可以通过在线关键词搜索PubMed和609个Z39.50数据库中的专业资料, 同时保存查找的资料为本地文件,以利于管理。它可以与WORD挂接,从而在文档编辑的过程中直接从Reference Manager查找并插入引用。 网址: /
8. Melanie 3是著名的Melanie 2D电泳图谱分析软件包的第3代产品,由瑞士生物信息研究院开发。它为2D凝胶图谱的分析、注解和查询提供了一个All-in-one的解决方案。该软件包使用方便,功能强大,为各种简单的或大尺度的2D凝胶图谱的比较研究提供全面的分析手段。该软件包的构思和功能同时满足了专家和初学者的需要,重要的是它对凝胶图谱的自动和交互式的分析方式,极大地方便了用户的使用。无论是对凝胶的识别、定量还是匹配,Melanie都能胜任。内容广泛的注解方案、高超的统计和分类能力、万能的搜索引擎和智能的报告功能,使得该软件成为了名副其实的新一代2D凝胶分析软件。事实上,一般科研工作者研究的数据来源是多渠道的,为了满足这种需要,Melanie 3支持大多光谱测定数据,同时通过本地网络或Internet网,实现了与其他外部数据链接。 网址: http://www.expasy.ch/melanie/
9. TotalLab是一个完整的图像分析应用程序包,随着该软件推出和功能的完善,可以说,它将会带来实验室的一场革命。TotalLab软件包由几大部本集合而成,它们是:1D电泳图谱分析,基因芯片分析,菌落计算和扫描功能。每一个组件都从同一界面运行,该界面被称为TotalLab控制中心。也就是说,TotalLab可以直接分析1D凝胶图谱、点杂交、微量滴定板、其他阵列以及通过扫描仪得到的菌落图像等等。 其实,给人印象最深的特点是它的使用简单的界面。TotalLab是目前实验室使用软件中最友好的一个,程序中的分析功能都设计得尽可能地灵活且操作简单。该软件所分析的图像可通过各种图像摄取设备输入,无论是复杂的射线图及荧光图谱,还是标准的凝胶自动成像系统
和桌面扫描仪,都能被自动识别。正是由于TotalLab功能强,使用简便,且能与目前的所有Windows系统都能很好地兼容,所以只要一个实验室有了TotalLab,加上紫外灯以及一台数码相机或扫描仪,就可以组建起自己的凝胶自动成像系统。 网址: /
10. InStat 绝大多数的统计软件都是由统计数家来设计的,其目的也是为了方便统计学家的使用。这些软件都具有各自的个性和极强的功能。但是作为一个普通的科学研究人员,往往被他们那厚厚的说明书、晦涩的统计学术语和高昂的价格所困。GraphPad InStat与他们不同的是,他是由科学家自己为自己的使用而设计的。下面是你应该选择InStat的四个理由:首先,InStat可以一步一步地引导你地使用,这样就大大方便了你对该软件的掌握,毫不夸张地说,你甚至可以在几秒的时间里学会该软件的使用。第二,InStat可以通过对你的数据提出若干问题的方法来帮助你挑选一个合适的测试方法,你甚至没有必要知道你所需要的测试方法的名字。如果你还没有把握的话,还可以参考软件提供的帮助页面,在里面你将会得到相关统计原因的解释。第三,InStat并不在意你是否是一个专业统计人员,他所最终提供的统计结果是用简单的语言和很少的统计术语来展示。第四,通常,在统计软件中,很容易对一个正确的问题而得到一个错误的回答,为此,InStat提供了一种独特的分析检测列表。你可以两次核对那些没有违反测试假设的数据,以及你所选择的测试方法,当然该方法应该与你的实验设计相匹配。 网址: /instat3/instat.htm
11. Prism主要包括非线性回归、基础生物统计和科学绘图三个方面的功能。Prism的独特设计会大大提高用户分析、作图和组织实验数据的效率。该软件的突出特点主要有以下几个方面:自动误差校对并从重复估计值中计算出误差值;简单的一步法非线性回归分析;直接从列表中选择方程式,并由Prism完成余下的工作;简单易懂的帮助系统,在每个选择和结果的后面都以显示其基本原理;自动更新,能在数据输入的过程中修复错误,并自动更新结果、图表和版面。自动程序分析,当重复一个实验时,能一步完成改实验的数据分析和图表的绘制;记录所有工作过程,并将记录结果保存为一个特定格式的文件。由于每一步都是有关联的,你可以随时折回以前的工作步骤。 网址: http://www.prism.uvsq.fr/
12. Origin是一个高级科学绘图和数据分析软件,它具有处理速度快,通用性强和界面友好等特点;同时提供了去除边缘数据功能和各种绘图工具。作为最新的版本,Origin6.0能更好地与Windows系统兼容,同时易用性、功能和速度都有了进一步的提
高。你能很方便地导入数据或者直接打开Excel数据。只需通过简单地点击鼠标,就可以极快且毫不费力地产生一系列地2D和3D曲线图。对着对象双击鼠标,得到一个专用对话框后就可以修改曲线图的组成元素。另外,Origin突出的分析功能还包括各种描述性的统计、区分、综合、筛选、FFT、线性及非线性的曲线装配和最高峰查询等。最终的曲线图可以导出为EPS、AI、JPEG和其他通用的图形文件格式。 网址: http://www./
13. SigmaPlot 在对数据进行长时间的收集和分析后,你就有了简洁而有精确展示结果的需要。可以肯定的是,你能用电子制表或数据分析软件来产生一个图表,但是那样会消耗大量的时间,剩下来真正做研究的时间就会大打折扣。有了SigmaPlot,将会极大地提高你的图表绘制和分析能力,得到发表质量的图表。 科学工作者可根据自己的需要来定制SigmaPlot,从而设计出任何结果输出的解决方案。为此,该软件提供了大量图表绘制分析选项:技术性轴向刻度、多轴显示和多向交叉的3-D图表等等。通过SigmaPlot的智能界面和操作向导,你就可以一步一步地绘制表格同时进行数据分析。在生成个性图表时的灵活性,以及输出结果时的速度,都会超出你的想象。 网址: /SigmaPlot/index.cfm
14. ChemWindow6.0 是由Bio-Rad公司最新推出的一款化学绘图的综合软件包,它的最大卖点就是能绘制几乎任何复杂程度的化学结构图和化学实验工具器械的示意图。使用ChemWindow,能够绘制出出版质量的化学结构和化学反应图、实验室装备和化学工艺流程图等。为了提高绘图的速度和可操作性,该软件提供了3个不同类别的素材库,它们是:1.分别按名称归类且可编辑的有机化学和药理学结构式,共4500个;2. 130个实验室玻璃器皿构件,极易组合成各种实验设备;3. 250个工程符号,用以构建工艺流程图表。 ChemWindow具有智能化的适时保存工具,使得用户可以在打乱结构图后可以自动复原并显示分子聚合体以及每个片段所在位置。另外,该版本提供了一些新的功能,如:最新标记工具、纽曼设计、角化反应、设计工作台、标签原子和支持真彩色等。 网址: /
研究生必备与500万研究生在线互动!
扫描下载送金币
浏览器进程
打开微信扫一扫
随时随地聊科研中国328个玉米品种(组合)SSR标记遗传多样性分析
王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航. 中国328个玉米品种(组合)SSR标记遗传多样性分析. 中国农业科学, ): 856-864[WANG Feng-ge, TIAN Hong-li, ZHAO Jiu-ran, WANG Lu, YI Hong-mei, SONG Wei, GAO Yu-qian, YANG Guo-hang. Genetic Diversity Analysis of 328 Maize Varieties (Hybridized Combinations) Using SSR Markers. SCIENTIA AGRICULTURA SINICA, ): 856-864]&&
Permissions
中国328个玉米品种(组合)SSR标记遗传多样性分析
北京市农林科学院玉米研究中心,北京 100097
通信作者:赵久然,E-mail:
联系方式:王凤格,E-mail:;田红丽,E-mail:;王凤格和田红丽为同等贡献作者。
基金:国家国际科技合作项目(2010DFB33740)、国家“十二五”农村领域国家科技计划课题(2011BAD35B09);
【目的】从育成年份、种植区域角度分析中国328个玉米品种的遗传多样性,在分子水平上分析各适宜种植区域品种的遗传分化特点,为玉米品种区域试验、审定管理以及育种策略提供一定的理论依据。【方法】利用均匀分布于玉米基因组的40对核心SSR引物,采用10重荧光毛细管电泳检测技术对328个代表性育成品种进行基因分型;通过Power-Marker ver.3.25软件评估40对SSR引物多态性,对参试品种按年份、区试组分析遗传多样性情况;利用多变量统计分析软件MVSP ver.3.13对328个品种按区试组进行主坐标分析。【结果】基于328个玉米品种数据,检测到40对SSR引物等位基因变异范围为3—16个,平均8.10个,多态信息指数(PIC)值变化范围为0.18—0.85,平均为0.63。参试品种不同年份间遗传多样性变化不大,PIC值在0.60左右摆动;8个区试组品种的总等位基因和总基因型变异范围为170—262和200—511,京津唐和西南组分别表现出了最低值和最高值,京津唐组PIC值最低为0.51,其余组均接近于0.60,平均杂合度均在0.60左右。8个区试组主坐标分析显示鲜食、极早熟品种遗传分布偏离普通玉米区域,具有明显的种质特异性;青贮玉米由于早期对照品种为普通玉米导致遗传分布向普通玉米延伸,仅有少数品种分布偏离普通玉米;京津唐、西南、东北早熟三组品种遗传分布相对集中;极早熟、京津唐、西南三组之间品种遗传分布几乎无重叠区域;东华北和黄淮海两组参试品种遗传分布具有明显的分化但也有部分重叠,原因与对照品种曾经相同、育种同质化有关。【结论】利用SSR标记分析328份玉米品种的遗传多样性及遗传分化特点,表明近年来育成品种遗传多样性指数在不同年份间变化不大,除京津唐组之外在其它区试组间差异性也不大。参试品种主坐标分析显示各区试组划分、对照品种设置起到了育种导向的作用。
遗传多样性
Genetic Diversity Analysis of 328 Maize Varieties (Hybridized Combinations) Using SSR Markers
WANG Feng-ge,
TIAN Hong-li,
ZHAO Jiu-ran,
YI Hong-mei,
GAO Yu-qian,
YANG Guo-hang
Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097
【Objective】 The objective of this study is to analyze the genetic diversity of 328 maize varieties from breeding years, planting regions, and to research the genetic differentiation characteristics of all the varieties from every appropriate planting region. This study will provide a theoretical basis for the maize regional trial, validation management and breeding strategic adjustment. 【Method】 Forty core SSR primers covering the entire maize genome were used to scan 328 samples by high-throughput 10-plex capillary electrophoresis platform. The polymorphism of 40 SSR loci and genetic diversity of 328 samples were evaluated via the software Power-Marker ver.3.25, and the Principal Coordinate Analysis (PCoA) of these samples from every regional trial groups was executed using statistical analysis software MVSP ver.3.13. 【Result】 The detected alleles of 40 SSR primers ranged from 3 to 16, with an average of 8.10, the polymorphism information index (PIC) ranged from 0.18 to 0.85, with an average of 0.63. There were no significant genetic diversity changes among varieties from different years, and all the PIC values were about 0.60. The total allele and gene-type number of 8 regional trial groups ranged from 170 to 262 and from 200 to 511. The varieties from Jing-Jin-Tang and Xi-Nan displayed the minimum and maximum values. The varieties from Jing-Jin-Tang group displayed the lowest PIC value of 0.51, and the remaining groups were near 0.60, and the average heterozygosity was about 0.60. Principal coordinate analysis (PCoA) of varieties from eight regional trial groups showed that the genetic distribution of varieties from Xian-Shi (maize for table use) and Ji-Zao-Shu (very early maturity maize) groups deviated from the common maize region, displayed an obvious germplasm specificity. As the common maize varieties were used as control samples at early stage, the genetic distribution of Qing-Chu (silage corn) extended to common maize. The genetic distribution of varieties from Jing-Jin-Tang, Xi-Nan and Dong-Bei-Zao groups was relatively concentrated. The genetic distribution of varieties from Ji-Zao-Shu, Jing-Jin-Tang and Xi-Nan groups was almost no overlap. There is an obvious genetic variation of varieties from Dong-Hua-Bei and Huang-Huai-Hai groups, but also there are some overlaps, and the reasons might be the same control variety and the same breeding resource. 【Conclusion】 Genetic diversity and genetic differentiation of 328 maize varieties were analyzed using 40 SSR markers. The results showed that there were no significant genetic diversity changes among varieties in different years, and there were also no significant changes among different groups except that from Jing-Jin-Tang. Principal coordinate analysis showed that the setting of regional trial groups and control varieties has played a guiding role in breeding.
SSR marker;
regional trial;
genetic diversity
0 引言【研究意义】玉米是具有粮、经、果、饲、能多元用途的中国重要农作物之一,就种植面积而言已经是第一大作物,其总产的增加对全国粮食增产贡献率位居各大粮食作物之首。除了面积、产量快速增加之外,随着育种进程的加快,玉米品种数量也急剧增加。统计年数据,通过国家和各省市审定的玉米品种数目大约5 600个,其中,国家审定417个,而且近几年每年参加国家和各省市的区域试验样品数千个。虽然玉米已经日益凸现出重要性,但是就杂交种而言其遗传多样性研究报道极少,玉米杂交种多样性研究主要体现在已经大面积推广应用的杂交种和参加区域试验的品种。玉米区域试验是玉米育种和新品种推广的重要环节,参试品种尤其是进入生产试验品种代表了当前玉米育种的动向和水平,因此,对参试品种的遗传多样性进行分析,可以客观、全面了解当前玉米品种现状,对于品种管理、品种选育以及种质资源收集和保护具有重要意义。【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[,,,,,]。众多分子标记中,简单重复序列(simple sequence repeats,SSR)标记因具有简便、快捷、重复性高、多态性高、共显性标记等优点而被广泛应用。中国水稻[]、小麦[,]、大豆[]等重要农作物均已利用SSR标记对核心种质或育成品种进行了分析评估,为遗传研究和育种工作提供重要的依据和参考。对玉米而言,全基因组测序研究基础较好,开发的大量标记位点可共享如maizeGDB和panzea网站公布大量SSR位点。这些研究为玉米品种DNA指纹数据库构建、遗传多样性分析等研究奠定了良好的基础。迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[,,,,,,]或地方品种遗传多样性分析[,,]。【本研究切入点】相对于玉米自交系而言,育成杂交种的报道极少,在中国仅有早期基于形态或系谱对杂交种的分析[],2005年国家预试品种分析[]或省内推广品种的分析[,];国外玉米杂交种的研究主要是欧洲近50年来育成品种的遗传多样性分析[]。育成玉米杂交种代表了当前育种水平和动态,品种管理者和育种家十分关注杂交种的具体情况,其审定品种的SSR标准指纹均已经构建,但是玉米杂交种的遗传多样性没有进行系统的分析。因此除应继续加强DNA标准指纹数据库构建之外,可按国家、各省逐步开展玉米杂交种的遗传多样研究,以便及时对中国玉米杂交种的遗传多样性进行动态监测。【拟解决的关键问题】本研究利用40对SSR引物对年来参加国家玉米区试生产试验品种及大面积推广品种共计328个品种,从育成年份、适宜种植区域多个角度进行遗传多样性分析,试图在分子水平上摸清中国育成品种的遗传多样性情况,各种植区域品种的遗传分化特点,主要目的为玉米品种区域试验、审定管理提供理论依据,同时对育种策略的调整具有一定的参考价值。1 材料与方法1.1 试验材料供试材料包括年参加国家玉米区试生产试验的品种289份();各区组对照品种19份;为了全面反映育成品种现状,并且数据分析时具有参照样品,同时补充了在全国推广面积前20位的品种(按年累计推广面积统计),共计328份品种。1.2 基因组DNA提取供试品种总DNA提取采取CTAB大量提取法,具体步骤按照CIMMYT(International Maize and Wheat Improvement Center)实验操作流程[]。DNA质量和浓度用NanoDrop 2000 (Thermo Scientific)紫外分光光度计进行测定,根据测量值调节工作液浓度。1.3 SSR标记分析选用的40对引物是由北京市农林科学院玉米研究中心报道的第Ⅰ组的20对基本核心引物和第Ⅱ组的20对扩展核心引物,引物名称、序列等具体信息参考已发表的文献[24],这40对引物为国家玉米品种区域试验DNA指纹鉴定指定引物。每对引物其中一条的5′端用一种荧光染料标记,共选用了PET、NED、VIC、FAM 四种荧光染料(Applied Biosystems,USA公司合成)。PCR反应体系为20 &#x003L,包括4 &#x003L DNA、0.25 &#x003mol·L-1引物、0.15 &#x003mol·L-1 dNTP、2.5 mmol·L-1 MgCl2、1单位Taq酶(Genacea,美国)、1×PCR Buffer。PCR反应在BIO-RAD公司的PTC-100型PCR仪器上进行,程序为94℃ 594℃ 40 s,60℃ 35 s,72℃ 45 s,35个循环;72℃ 10 min,4℃保存待测。PCR产物在毛细管荧光电泳系统AB 3730XL DNA分析仪(Applied Biosystems,USA)上检测。采用10重PCR产物电泳检测的方法,即按照扩增片段大小和荧光染料的种类可将10对引物的扩增产物混合在一起电泳[]。在96孔电泳板的单个孔中分别加入1.5 &#x003L 10重PCR产物的混合物,8.5 &#x003L甲酰胺,0.1 &#x003L内标(GeneScanTM-500 LIZ,Applied Biosystems,USA)。上述混合样品在PCR仪上运行95℃变性5 min,将变性后的电泳产物取出,1 000 r/min离心1 min后,于AB 3730XL DNA分析仪上进行电泳。预电泳时间为2 min,15 KV,电泳时间为20 min,15 KV。Date Collection Ver.1.0软件收集原始数据。1.4 数据统计分析用GeneMapper Ver.3.7(Applied Biosystems,USA)进行原始数据统计和校正,得到328样品×40对SSR引物的原始数据表。根据40对核心引物等位基因信息表对上述原始数据进行等位基因确定,并形成标准DNA指纹数据,该等位基因信息表由北京市农林科学院玉米研究中心通过在毛细管荧光电泳系统分析大量自交系和杂交种数据总结整理得到[]。选用Power-Marker ver.3.25软件[],基于328份玉米品种数据分析每对引物的等位基因数目和PIC值(polymorphism information content)。同时对参试品种按年份、按区试组别分别对等位基因变异丰富度(即等位基因数目变化情况)、PIC值、杂合度(Heterozygosity)等情况进行分析。选用群体遗传分析软件Popgene ver.1.31[]分析各区试组之间的Nei遗传距离[]。参考Reif等[]针对于杂交种分析方法,在本研究中选用多变量统计分析软件MVSP ver.3.13(Kovach computing services),将8个区组分别作为独立群体进行主坐标分析(principal coordinate analysis,PCoA),直观反映8个区试组之间的关系,为了进一步确定东华北与黄淮海两区,西南与东北早两区之间参试样品关系,将其独立进行主坐标分析。2 结果2.1 40对SSR引物多态性分析基于328份品种数据分析40对SSR引物的等位基因和PIC指数变化(-A),40对引物检测到的等位基因变异范围为3—16个,平均8.10个,多态信息指数PIC值变化范围为0.18—0.85,平均0.63,反映PIC指数变化与等位基因变异丰富度密切相关,随着等位基因数目的增加PIC值也在增加,但并非线性关系,有的位点(如N19)等位基因数目较多,但PIC值却较低。对N19(等位基因数=6,PIC=0.36)和N22(等位基因=16,PIC=0.85)2个位点的所有等位基因在所有品种中的分布频率进行统计分析(-B和-C),位点N19的6个等位基因中,等位基因222分布频率非常高达78%,因此,6个等位基因在杂交种的分布不均匀。与N19的情况相反,位点N22的等位基因分布频率相对均匀,有多个高频率的等位基因。图1Fig. 1 图1 40对核心SSR引物多态性分析Fig. 1 Polymorphism of the 40 core SSR primers used in this study2.2 中国选育玉米品种的遗传多样性和遗传结构分析不同年份选育玉米品种的遗传多样性比较:289份区域试验品种依据年份划分为6组,进行遗传多样性分析评价()。、2009年品种的总等位基因数、总基因型数、平均等位基因数、平均基因型数均高于年相应的值,但可能受参试品种数目变化影响;各年度间PIC值以及平均杂合度变化不大,PIC值和杂合度均在0.60左右摆动,说明近些年来参加国家玉米品种生产试验样品的遗传多样性没有较大变化。表1Table 1表1(Table 1)
表1 参加生产试验玉米品种不同年份之间的遗传多样性
Table 1 Genetic diversity comparison of maize varieties tested in national production trial in different years年度Year样品数目Sample number总等位基因数Total allele number总基因型数Total gene type number平均等位基因数Average allele number平均基因型数Average gene type numberPIC值PIC index平均杂合度Average heterozygosity2004212013235.038.080.590.582005782545266.3513.150.600.602006752595476.4813.680.610.622007422494666.2311.650.610.592008232123515.308.780.610.572009502555016.3812.530.620.63
表1 参加生产试验玉米品种不同年份之间的遗传多样性
Table 1 Genetic diversity comparison of maize varieties tested in national production trial in different years不同区试组别玉米品种的遗传多样性比较:国家玉米品种区域试验主管部门依据生态区划、农业区划、品种类型、结合生产实际、播期类型等划分各个试验区组。328份杂交种按照用途和区域试验组别划分为10组(根据2009年国家玉米品种区域试验方案划分),其中,西北春玉米组由于每年进入生产试验的样品量较少,东南玉米组是2007年才增加的一个区试组别,所以这两个组中样品量较少没有列入分析()。参与比较分析的8个区试组品种的总等位基因和总基因型变异范围为170—262和200—511,京津唐和西南组分别表现出了最低值和最高值,就平均等位基因和平均基因型数而言,京津唐和极早熟组相对较低,PIC值京津唐组最低为0.51,其余均接近于0.60,平均杂合度均在0.60左右。说明除京津唐组之外,各区组之间遗传多样性差异不大。表2Table 2表2(Table 2)
表2 8个玉米区试组之间的品种的遗传多样性比较
Table 2 Genetic diversity comparison among different maize regional trial groups区试组别(简称)Regional trial groups (shortened form)样品数目Sample number总等位基因数Total allele number总基因型数Total gene type number平均等位基因数Average allelenumber平均基因型数Average genetype numberPIC值PIC index平均杂合度Average heterozygosity京津唐夏播早熟玉米 Jing-Jin-Tang (JJT)141702004.255.000.510.59东北早熟春玉米 Dong-Bei-Zao (DB)392173865.439.650.580.62东华北春玉米 Dong-Hua-Bei (DHB)852445046.1012.600.590.61黄淮海夏播玉米 Huang-Huai-Hai (HHH)452243955.609.880.580.60西南玉米 Xi-Nan (XN)592625116.5512.780.600.60极早熟玉米 Ji-Zao-Shu (JZS)111732294.335.730.560.58鲜食甜糯玉米 Xian-Shi (XS)412524736.3011.830.630.56青贮玉米 Qing-Chu (QC)322273715.689.280.580.61
表2 8个玉米区试组之间的品种的遗传多样性比较
Table 2 Genetic diversity comparison among different maize regional trial groups杂交种各区试组之间的遗传距离:以8个区试组别为单位分析各组别之间的Nei[]遗传距离()。就各组之间的遗传距离而言,京津唐与其他组之间遗传距离最远,如京津唐与极早熟、鲜食、东华北、西南之间的遗传距离相对于其他组别之间最远,西南组与东华北组之间遗传距离最近,各组之间遗传距离相对较近的均集中在西南、东北华与青贮、黄淮海、东北早熟之间。表3Table 3表3(Table 3)
表3 8个区试组别之间的Nei(1972)遗传距离
Table 3 Nei (1972) genetic distance among eight regional trial groups区试组别Shortened form东北早DB东华北DHB黄淮海HHH京津唐JJT极早熟JZS青贮QC西南XN鲜食XS东北早DB0.000东华北DHB0.0530.000黄淮海HHH0.0810.0590.000京津唐JJT0.1640.2090.1240.000极早熟JZS0.1460.1820.1940.2770.000青贮QC0.1140.0640.0860.1830.2200.000西南XN0.0730.0400.0760.2070.1870.0510.000鲜食XS0.1840.1640.1560.2570.1780.1780.1590.000
表3 8个区试组别之间的Nei(1972)遗传距离
Table 3 Nei (1972) genetic distance among eight regional trial groups杂交种各区试组的PCoA分析:对8个区试组进行主坐标分析,直观反映它们之间的关系()。鲜食与普通玉米能明显区分开,虽然在分布上有一定的重叠区域,但基本上各自占据相应的位置。青贮绝大部分品种与其他普通玉米分布重叠没有区分开,少数品种与普通玉米能区分开,但青贮玉米的区试对照品种(雅玉青贮26和雅玉青贮8号)分布偏离普通玉米区域。除了鲜食玉米之外,极早熟玉米与其他普通玉米在分布上也有一定的隔离(-A)。极早熟、京津唐、西南、东北早熟这四个组的品种遗传变异相对集中,极早熟、京津唐、西南三组之间样品遗传分布几乎无重叠区域;西南与东北早两组在地理分布上无任何交叉但遗传分布重叠(-B和-C)。东华北、黄淮海两组品种的遗传变异较大(-D)。根据8个区试组别的具体分布情况将主坐标分析图划分成4个区域Ⅰ、Ⅱ、Ⅲ、Ⅳ,西南、东北早熟组分布在Ⅰ区,青贮玉米分布在Ⅰ和Ⅱ区,但主要集中在Ⅰ区,鲜食和极早熟组主要分布在Ⅱ区,京津唐组分布在Ⅳ组,东华北和黄淮海组在Ⅰ和Ⅳ区都有分布但东华北组分布主要集中在Ⅰ区。根据8个区组分析结果显示,西南和东北早两组样品遗传分布几乎完全重叠,东华北和黄淮海两组样品遗传分布有重叠,但是两组具有一定的分化。将东华北与黄淮海两组、西南与东北早两组之间参试样品独立进行主坐标分析显示,东华北和黄淮海两组样品遗传分布有部分重叠但明显有分化,西南与东北早两组样品遗传分布几乎无重叠,并且对照品种分布于各自区域内()。图2Fig. 2 图2 基于40对SSR引物数据8个区试组别玉米品种的主坐标分析Fig. 2 Principal coordinate analysis (PCoA) of varieties from eight regional trial groups based on 40 SSR primers data图3Fig. 3 图3 基于40对SSR引物数据黄淮海与东华北、西南与东北早区试组之间玉米品种的主坐标分析Fig. 3 Principal coordinate analysis (PCoA) of varieties from Huang-Huai-Hai (HHH), Dong-Hua-Bei (CHB), Xi-Nan (XN), and Dong-Bei-Zao (DB) groups based on 40 SSR primers data3 讨论3.1 玉米品种遗传多样性分析评价玉米品种遗传多样性可以从2个方面着手,一是参加区域试验样品的遗传多样性,二是生产上已经大面积推广应用的品种。本研究利用40对核心SSR引物系统分析年参加生产试验和大面积推广玉米品种的遗传多样性状况。328份样品在某些引物中等位基因的分布规律表现出了一定的种质利用趋同趋势,即在部分引物(如N02、N19)表现出在一个或两个等位基因的分布频率非常高,而在其它的等位基因频率非常低的特点,这可能是由于农艺性状的选择导致了等位基因分布不平衡,也可能与某些资源尤其是优良骨干自交系的集中利用有关。近年来育成品种遗传多样性在不同年份间,不同区试组之间波动都不大。8个区试组比较显示京津唐、极早熟组等位基因、基因型数目上相对较低,西南组显示出了最高值,就PIC值而言除京津唐之外其余组差别不大。这可能与京津唐区域地理跨度最小,气候、土壤、耕作栽培特点等差异小有关,相反西南区域地理跨度较大,并且气候复杂,耕作栽培特点多样化,故品种多样化程度较高[]。小麦、水稻育成品种的遗传多样性均有揭示品种遗传基础狭窄化的状况[,]。本研究结果显示玉米育成品种遗传基础狭窄问题不明显,这应该与所研究材料有一定的关系,因小麦、水稻分析比较的材料时间跨度比较大,早期推广应用的地方原始品种比较多一些,从纵向上来比较遗传多样性可能在下降。另一方面也与作物本身的特征有一定的关系,小麦、水稻属于自交授粉并且大部分品种属于常规育种,而玉米属于杂交授粉而且目前全部是单交种,因此玉米类群本身遗传变异相对大,根据Buckler等[]的报道玉米种内的遗传变异非常高以至于2份玉米品种之间的平均差异度比人类和灵长类之间差异还大。3.2 国家玉米品种区域试验、审定制度与现代育种国家玉米品种区域试验于2002年启动参试样品的DNA指纹检测,2004年普通玉米品种DNA指纹检测范围由5个区试组扩大到8个区试组,2006年将检测范围扩大到鲜食和青贮,并且在2005年要求所有参试样品均入长期库保存。本文选取了参加年生产试验玉米样品,基本上代表了最新育成的品种情况,在一定程度上反映了中国当前一个时期玉米育种的水平和特点。对这些品种的遗传多样性和种植区域遗传分化进行分析评估,一是服务于中国玉米品种区试、审定管理工作,二是服务于品种选育工作,为两者提供数据支持。国家玉米品种区域试验各区组育成品种与区组划分情况:玉米品种按用途分为普通玉米、鲜食、青贮和爆裂(2013年新增加爆裂玉米)四大类,普通玉米适宜种植区域划分在2009年稳定为京津唐、东北早熟、东华北、黄淮海、西南、西北、东南、极早熟8个区域。划分玉米各区组是为了针对不同品种类型和生态特点筛选区域适应性的品种,从而使玉米品种的选育推广具有针对性。本研究结果显示育成的鲜食玉米具有类型特异性,可与普通玉米明显区分开。青贮玉米育种的遗传基础较宽泛,与普通玉米重叠分布,原因可能是与早期对照样品为粮饲兼用型玉米农大108有关,2007年之后对照样品修改为青贮专用型玉米,因此,预期2009年之后的选育的品种会向青贮专用资源转变。极早熟样品具有区域特殊性,遗传分布相对集中且与其它普通玉米之间的遗传差异较大。东华北和黄淮海两个组不仅在地理分布上有重叠,主坐标分析结果显示其育成品种遗传分布也有部分重叠,但两区的参试样品具有的遗传分化。表明两组的育种资源具有部分相似性,如两组中黄改系的应用[];除此之外同一品种同时参加两组审定相对较多,如富友9号、安玉13、农华101等,造成东华北和黄淮海两组品种存在种质利用趋同情况;但是根据2个组样品主坐标分析结果显示两区遗传分化是比较明显的,(-A),这应该与2大主产区所涉及地理区域和生态区域差异性、适宜品种类型差异性、主要育种资源、育种模式差异性相关。国家玉米品种区域试验各区组育成品种与对照品种关系:对照品种代表了各区最适宜推广种植的品种类型,对各区玉米品种选育发挥导向作用。本研究显示鲜食、京津唐、极早熟、东北早、西南区组的对照品种基本上能代表各自区域特异性。青贮区组对照品种2007年以来改为青贮专用型品种雅玉青贮8号和雅玉青贮26,以引导青贮专用玉米选育,主坐标分析结果显示雅玉青贮8号和雅玉青贮26的分布偏离普通玉米的整体分布,用它们作为青贮对照能够起到育种导向从粮饲兼用型向青贮专用型转变的作用。根据主坐标分析显示,东华北和黄淮海两组具有比较明显的分化,也有部分重叠。这与两组对照品种设置历史是相符的,对照品种早期(2004年以前)均为农大108,之后黄淮海区修改为郑单958,东华北除郑单958之外还设置其他对照品种。同时也说明2个区虽然有一定的重叠,但所涉及地理区域和生态区域差异比较大,育种资源、育种模式具有一定差异性,导致参试品种呈现一定的分化、倾向性。因此应该选择各自分化区域的代表类型作为其对照品种,从而在育种导向上明确这两个区的区域特殊性。4 结论通过利用SSR标记分析328份玉米品种的遗传多样性及遗传分化特点,发现近年来育成品种遗传多样性指数在不同年份间变化不大,除京津唐区之外在其它区试组间差异性也不大。参试品种主坐标分析显示各区试组划分、对照品种设置起到了育种导向的作用。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
Hartings H, Berardo N, Mazzinelli G F, Valoti P, Verderio A, Motto M.
Assessment of genetic diversity and
relationships among maize (Zea mays L. ) Italian land race by morphological traits and
AFLP profiling.
[本文引用:2]
[JCR: 3.658]
Lu H, Bernardo R.
Molecular marker diversity among current and
historical maize inbreds.
[本文引用:2]
[JCR: 3.658]
Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y.
Genetic diversity and
structure of the core collection for maize inbred lines in China. Maydica, 2007, 52: 181-194.
[本文引用:2]
[JCR: 0.368]
Barcaccia G, Lucchin M, Parrini P.
Characterization of a flint maize (Zea mays var. indurate) Italian land race: II. Genetic diversity and
relatedness assessed by SSR and
Inter-SSR molecular markers.
[本文引用:1]
[JCR: 1.593]
Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J.
An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L. ): Comparisons with data from RFLPS and
[本文引用:1]
[JCR: 3.658]
Garcia A A F, Benchimol L L, Barbosa A M M, Geraldi I O, Souza Jr.
C L, Souza A P. Comparison of RAPD, RFLP, AFLP and
SSR markers for diversity studies in tropical maize inbred lines. Genetics and
Molecular Biology, 2004, 27: 579-588.
[本文引用:1]
[JCR: 0.744]
齐永文, 张冬玲, 张洪亮, 王美兴, 孙俊立, 廖登群, 魏兴华, 裘宗恩, 汤圣祥, 曹永生, 王象坤, 李自超.
中国水稻选育品种遗传多样性及其近50年变化趋势. Qi Y W, Zhang D L, Zhang H L, Wang M X, Sun J L, Liao D Q, Wei X H, Qiu Z E, Tang S X, Cao Y S, Wang X K, Li Z C.
Genetic diversity of rice cultivars (Oryza Sativa L. ) in China and
the temporal trends in recent fifty years.
[本文引用:2]
[CJCR: 0.95]
郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生.
我国育成小麦品种的遗传多样性演变. 中国科学C辑, 2005, 35(5): 408-415. Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y S, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S.
Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science in China: Series C Life Sciences, 2006, 49(3): 218-226. (in Chinese)
[本文引用:2]
郝晨阳, 董玉琛, 王兰芬, 游光霞, 张洪娜, 盖红梅, 贾继增, 张学勇.
我国普通小麦核心种质的构建及遗传多样性分析. Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Gai H M, Jia J Z, Zhang X Y.
Genetic diversity and
construction of core collection in Chinese wheat genetic resources.
[本文引用:1]
[CJCR: 0.95]
文自翔, 赵团结, 丁艳来, 盖钧镒.
中国栽培及野生大豆的遗传多样性、地理分化和演化关系研究. Wen Z X, Zhao T J, Ding Y L, Gai J Y.
Genetic diversity, geographic differentiation and
evolutionary relationship among ecotypes of Glycine max and
G. soja in China.
[本文引用:1]
[CJCR: 0.95]
Gethi J G, Labate J A, Lamkey K R, Smith M E, Kresovich S.
SSR variation in important U. S. maize inbred lines.
[本文引用:1]
[JCR: 1.513]
腾文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生.
十年来中国玉米杂种优势群及其模式变化的分析. Teng W T, Cao J S, Chen Y H, Liu X H, Jing X Q, Zhang F J, Li J S.
Analysis of maize heterotic groups and
patterns during past ecade in China.
[本文引用:1]
[CJCR: 1.889]
Legesse B W, Myburg A A, Pixley K V, Botha A M.
Genetic diversity of African maize inbred lines revealed by SSR markers.
[本文引用:1]
[CJCR: 0.928]
Xie C X, Ren W B, Sun G L, Peng J H.
Inferring genome ancestry and
estimating molecuar relatedness among 187 Chinese maize inbred lines.
[本文引用:1]
[JCR: 2.076]
[CJCR: 1.323]
Lu Y L, Yan J B, Guimarães C T, Taba S, Hao Z F, Gao S B, Chen S J, Li J S, Zhang S H, Vivek B S, Magorokosho C, Mugo S, Makumbi D, Parentoni S N, Shah T, Rong T, Crouch J H, Xu Yunbi.
Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphims.
[本文引用:2]
[JCR: 3.658]
Yao Q L, Yang K C, Pan G T, Rong T Z.
Genetic diversity of maize (Zea mays L. ) land races from southwest China based on SSR data.
[本文引用:1]
[JCR: 2.076]
[CJCR: 1.323]
Liu Z Z, Guo R H, Zhao J R, Cai Y L, Wang F G, Cao M J, Wang R H, Shi Y S, Song Y C, Wang T Y, Li Y.
Population structure and
genetci diversity of maize land races from the southwest mazie region of China. Maydica, 2009, 54: 63-76.
[本文引用:1]
[JCR: 0.368]
中国玉米杂交种的种质基础. Zeng S X.
The maize germplasm base of hybreds in China.
[本文引用:1]
[CJCR: 1.889]
李俊芳, 孙世贤, 王守才.
国家玉米主产区预试品种的SSR分析: II. 预试品种的遗传多样性. 玉米科学, 2007, 15(1): 16-20. Li J F, Sun S X, Wang S C.
Analysis of maize variety in national main production area using SSR technique: II Genetic diversity of maize variety. Journal of Maize Sciences, 2007, 15(1): 16-20. (in Chinese)
[本文引用:2]
[CJCR: 0.965]
陈发波, 杨克诚, 荣廷昭, 潘光堂.
西南及四川区试玉米组合遗传多样性分析. Chen F B, Yang K C, Rong T Z, Pan G T.
Analysis of genetic diversity of maize hybrids in the regional tests of sichuan and
southwest China.
[本文引用:1]
赵静, 孙娟, 张仁和, 薛吉全.
基于SSR技术分析陕西省玉米主栽品种的遗传多样性. 西北农业学报, 2008, 17(3): 124-128. Zhao J, Sun J, Zhang R H, Xue J Q.
Genetic diversity of main maize cultivars in Shaanxi province analysed by SSR markers. Acta Agriculturae Boreali-occidentalis Sinica, 2008, 17(3): 124-128. (in Chinese)
[本文引用:1]
[CJCR: 0.596]
Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E.
Trends in genetic diversity among European maize cultivars and
their parental components during the past 50 years.
[本文引用:2]
[JCR: 3.658]
Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. Third Edition. Mexico, D. F. : CIMMYT. 2005.
[本文引用:1]
Wang F G, Tian H L, Zhao J R, Yi H M, Wang L, Song W.
Development and
characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica, 2011, 56: 7-17.
[本文引用:1]
[JCR: 0.368]
王凤格, 赵久然, 孙世贤, 支巨振, 易红梅, 宋伟, 田红丽, 杨国航. 玉米品种DNA指纹鉴定技术-SSR标记的研究与应用. 北京: 中国农业科学技术出版社, 2011: 68-70. Wang F G, Zhao J R, Sun S X, Zhi J Z, Yi H M, Song W, Tian H L, Yang G H. DNA Fingerprinting Technology of Maize Varieties- Research and
Application of SSR Markers. Beijing: China Agriculture Science Technology Press, 2011: 68-70. (in Chinese)
[本文引用:1]
Liu K, Muse S V.
PowerMarker: An integrated analysis environment for genetic marker analysis.
[本文引用:1]
[JCR: 5.323]
Yeh F C, Yang R C, Boyle T.
Popgene version 1. 31 Microsoft Window-based Freeware for population genetic analysis. Centre for International Forestry Research, University of Alberta and
Tim Boyle, Edmonton, Alta, Canada. 1999.
[本文引用:1]
Genetic distance between populations.
[本文引用:2]
Buckler E S, Stevens N M.
Maize Origins, Domestication, and
selection//Motley T J, Zerega N, Cross H. Darwin’s Harvest. Columbia University Press, New York, 2005: 67-90.
[本文引用:1]
1.CRA-Istituto Sperimentale per la Cerealicoltura Sezione di Bergamo, Via Stezzano 24 24126 Bergamo Italy
In the present study we have analyzed the genetic diversity pattern in a sample of 54 Italian maize landraces, using morphological traits and molecular markers. Although the 54 landraces surveyed in this study were restricted to Lombardy, the core region of maize production in Italy, our data revealed a large genetic heterogeneity for both morphological and molecular traits in the accessions analyzed. Additionally, our data confirm that the AFLP markers produced a high frequency of polymorphic bands and were able to unequivocally fingerprint each of the landraces considered. Cluster analysis based on AFLP markers displayed a clearer separation of the accessions in comparison to morphological data. Different populations were divided into four major clusters reflecting the geographical origin and seasonal employment of the landraces analyzed. Molecular analysis of variance showed significant ( P & F
ST &=&0.25&±&0.3) and the degree of inbreeding within groups ( F
SC &=&0.22&±&0.2), did not diverge significantly, while both significantly differed from the degree of relatedness between markers within groups ( F
CT &=&0.04&±&0.03). Results are discussed in relation to a suitable conservation method.
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
1.Department of Agronomy, Purdue University, West Lafayette, IN , USA US 2.Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN , USA US
Advanced-cycle pedigree breeding has caused maize ( Zea mays L.) inbreds to become more-elite but more-narrow genetically. Our objectives were to evaluate the genetic distance among current and historical maize inbreds, and to estimate how much genetic diversity has been lost among current inbreds. We selected eight maize inbreds (B14, B37, B73, B84, Mo17, C103, Oh43 and H99) that largely represented the genetic background of current elite inbreds in the U.S. seed industry. A total of 32 other inbreds represented historical inbreds that were once important in maize breeding. Cluster analysis of the inbreds, using data for 83 SSR marker loci, agreed well with pedigree information. Inbreds from Iowa Stiff Stalk Synthetic (BSSS), Reid Yellow Dent, and Lancaster clustered into separate groups with only few exceptions. The average number of alleles per locus was 4.9 among all 40 inbreds and 3.2 among the eight current inbreds. The reduction in the number of alleles per locus was not solely due to sample size. The average genetic distance ( D
) was 0.65 among the eight current inbreds, 0.67 among the 32 historical inbreds, and 0.67 among all 40 inbreds. These differences were statistically insignificant. We conclude that genetic diversity among current inbreds has been reduced at the gene level but not at the population level. Hybrid breeding in maize maintained, rather than decreased, genetic diversity, at least during the initial subdivision of inbreds into BSSS and non-BSSS heterotic groups. We speculate, however, that exploiting other germplasm sources is necessary for sustaining long-term breeding progress in maize.
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
1.Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Faculty of Agriculture University of Padova, Agripolis Via Romea 16 Legnaro 35020 Italy
A comparative characterization of 10 field populations of the maize ( Zea mays var. indurata ) landrace Nostrano di Storo was carried out using different types of PCR-based markers. The inbred line B73 and three synthetics (VA143, VA154 and VA157) selected from as many landraces were also used. Genetic diversity and relatedness were evaluated over 84 SSR and 53 I-SSR marker alleles using a total of 253 individual DNAs. Up to 23 alleles per SSR locus were scored while the average effective number of alleles per population was 6.99. Nei's total genetic diversity as assessed with SSR markers was H T = 0.851 while the average diversity within populations was H S = 0.795. The overall Wright's fixation index F ST was as low as 0.066. Thus, more than 93% of the total variation was within population. Unique alleles over all SSR loci were found for six populations. An average of 17.7 marker alleles per I-SSR primer were scored with an effective number of marker alleles per locus of 1.34. The Shannon's diversity information index over all populations and I-SSR loci was 0.332, varying from 0.286 to 0.391. The extent of differentiation between populations was as low as G ST = 0.091. Dice's genetic similarity matrices were estimated for both SSR and I-SSR markers. The mean genetic similarity coefficients within and between populations were respectively 0.269 and 0.217, for SSR markers, and 0.591 and 0.564, for I-SSR markers. UPGMA dendrograms displayed all field populations but one clustered into a distinct group, in which the synthetic VA154, selected from the Marano Vicentino landrace, was also included. One field population and the other two synthetics were clustered separately as well B73. The matrix correlation assayed by the Mantel's correspondence test was as high as 0.908. Findings suggest that, although a high variability can be found among plants, most plant genotypes belong to the same landrace called Nostrano di Storo . Although gene flow from commercial hybrids might have occurred, the large number of polymorphisms and the presence of both unique alleles and alleles unshared with B73 and synthetics are the main factors underlying the value of this flint maize landrace as a source of genetic variation and peculiar germplasm traits. Because of its exclusive utilization for human consumption, such a molecular marker characterization will be a key step for obtaining the IGP mark and so promote the in situ conservation and protection of the landrace Nostrano di Storo .
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
... 【前人研究进展】随着分子生物技术的发展,分子标记种类和检测手段日趋完善,各种分子标记已经广泛应用玉米遗传多样性研究中[1,2,3,4,5,6] ...
. ):693-699
利用36个微卫星标记和42个表型性状对453份选育品种进行分析, 研究中国水稻选育品种的遗传多样性地理分布及其近50年的变化趋势. 结果表明, 微卫星标记和表型性状分析的遗传多样性具有较高的相似性; 籼稻品种的遗传多样性大于粳稻品种的遗传多样性; 从20世纪50年代到80年代, 选育品种的遗传多样性一直下降, 80年代降低到最低水平, 90年代又有显著提高; 在地理上华中稻区的选育品种遗传多样性最大, 东北稻区和西北稻区遗传多样性最小. 位于长江中下游的江苏、江西和西南地区的四川等地是中国水稻选育品种遗传多样性最大的地区. 东北地区作为重要的粳稻生产基地, 遗传基础非常狭窄, 应该发掘新的种质资源拓宽品种的遗传多样性.
... 中国水稻[7]、小麦[8,9]、大豆[10]等重要农作物均已利用SSR标记对核心种质或育成品种进行了分析评估,为遗传研究和育种工作提供重要的依据和参考 ...
... 小麦、水稻育成品种的遗传多样性均有揭示品种遗传基础狭窄化的状况[7,8] ...
... 中国水稻[7]、小麦[8,9]、大豆[10]等重要农作物均已利用SSR标记对核心种质或育成品种进行了分析评估,为遗传研究和育种工作提供重要的依据和参考 ...
... 小麦、水稻育成品种的遗传多样性均有揭示品种遗传基础狭窄化的状况[7,8] ...
. ):908-915
用分布于21个连锁群上的78个微卫星标记(SSR), 对我国5029份普通小麦初选核心种质进行基因型分析, 收集了40万条SSR数据. 以此为基础, 采用适当调整的分层分组代表性取样法(即分区取样时, 对材料遗传多样性高的地区略增加取样量, 反之略减少取样量; 著名品种、重要育种亲本和携带稀有等位变异的材料优先入选), 构建了由1160份材料组成的小麦核心种质(库), 其中地方品种762份、育成品种348份、国外引进品种50份. 核心种质占初选核心种质的23.1%, 占整体种质(23090份)的5%, 遗传代表性估计值为91.5%. 核心种质中地方品种的遗传多样性明显高于育成品种. 群体遗传结构及主坐标分析均显示我国地方品种和育成品种是两个相对独立的组群. 来源于不同生态区的地方品种遗传分化十分明显, 而育成品种分化相对较弱. 此外还构建了由231份材料组成的微核心种质, 其占整体种质的1%, 但遗传代表性估计值接近70%. 最后就核心种质构建的意义和取样策略进行了讨论.
... 中国水稻[7]、小麦[8,9]、大豆[10]等重要农作物均已利用SSR标记对核心种质或育成品种进行了分析评估,为遗传研究和育种工作提供重要的依据和参考 ...
栽培大豆的起源和演化是大豆生物学和农学基础研究的重要命题之一. 本研究选用60对细胞核SSR标记(nuSSR)和11对叶绿体SSR (cpSSR)标记, 在检测由393份地方品种和196份野生材料组成的全国代表性样本的细胞核、叶绿体基因组变异的基础上, 分析了栽培、野生地理生态群体间的遗传演化关系. 结果表明: (ⅰ) 野生群体核、质遗传多样性都明显大于栽培群体, 核、质等位变异数分别为:44个; 栽培大豆980个核等位变异中有377个(38.5%)为驯化后新生等位变异, 44个质等位变异中出现了7个(15.9%)新生等位变异. (ⅱ) 栽培生态类群中, 以南方3个地理生态类群(中南、华南、西南)遗传多样性较高; 野生生态类群中以长江中下游野生类群遗传多样性较高. (ⅲ) 从分子方差分析、遗传聚类与地理类群间关联分析及群体特有等位变异三方面证实我国栽培、野生大豆地理生态分化有其遗传分化的基础. (ⅳ) 以材料为单位的聚类结果表明与栽培大豆近缘的野生材料大多来自长江中下游及西南-中南野生地理类群; 进一步分析地理群体间的遗传距离, 并作UPGMA聚类, 发现各栽培地理类群与长江中下游野生大豆群体的遗传距离一致, 小于与包括本区在内的其他野生群体的距离, 结合该区野生群体特有的cpDNA等位变异NTCP10-117在所有栽培生态类群中都有分布的现象, 推论在南方野生群体中的长江中下游野生祖先可能是栽培大豆共同的野生祖先.
... 中国水稻[7]、小麦[8,9]、大豆[10]等重要农作物均已利用SSR标记对核心种质或育成品种进行了分析评估,为遗传研究和育种工作提供重要的依据和参考 ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
中国农业大学国家玉米改良中心
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
. ):738-748
Abstract The inference of genome ancestry and the estimation of molecular relatedness are of great importance for breeding efficiency and association studies. Seventy SSR loci, evenly distributed in 10 chromosomes, were assayed for polymorphism among 187 commonly used maize ( Zea mays L.) inbreds which represent the genetic diversity in China. The identified 290 alleles served as raw data for estimating population structure using the coalescent linked loci, based on the ADMIXTURE model. Population number, K , has been inferred to be between five and seven. Specifying five subpopulations ( K = 5) led to a distinct decrease and specifying K to be greater than six resulted in only minimal increases in the likelihood value. Therefore, population number, K , has been inferred into six subpopulations, which are PA, BSSS (includes Reid), PB, Lan (Lancaster Sure Crop), LRC (Luda Reb Cob, a Chinese landrace, and its derivatives), and SPT (Si-ping-tou, a Chinese landrace and its derivatives). The Kullback-Leibler distance of pairwise subpopulation was also inferred as n & p (187 & 6) Q matrices, which gave a detailed percentage of genetic composition of six subpopulations and molecular relatedness of each line. The genome-wide linkage disequilibrium (LD) indicated that the association studies in QTLs and/or candidate genes might avoid nonfunctional and spurious associations, as most of the LD blocks were broken among diverse germplasm. The defined population structure has given us a clear genetic structure of these lines for breeding practice and established a good basis for association analysis.
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
1.International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico 2.Maize Research Institute, Sichuan Agricultural University, Ya’an, Sichuan 625014, China 3.Embrapa Maize and Sorghum, CP 151, Sete Lagoas, MG , Brazil 4.Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Genetic Resources and Improvement, 100081 Beijing, China 5.National Maize Improvement Center of China, China Agricultural University, 100094 Beijing, China 6.CIMMYT, 12.5 Km peg Mazowe Road, P.O. Box MP163, Mount Pleasant, Harare, Zimbabwe 7.CIMMYT, PO Box 1041, Village Market, 00621 Nairobi, Kenya
Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142&kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
... 这可能与京津唐区域地理跨度最小,气候、土壤、耕作栽培特点等差异小有关,相反西南区域地理跨度较大,并且气候复杂,耕作栽培特点多样化,故品种多样化程度较高[15] ...
Abstract Genetic diversity of 54 maize landraces from southwest China was tested using bulk DNA samples and 42 microsatellite (SSR) loci distributed on 10 chromosomes of maize. A total of 256 alleles were detected among the landraces. At each locus, the number of alleles varied from 2 to 9, with an average of 6.1. On the basis of the genetic similarity coefficients, clustering analysis separated the landraces into four groups. The landraces collected from the same region were mostly grouped together. To reveal the genetic structure and genetic diversity within landraces, 165 individuals from 11 landraces were analyzed. Individual DNA samples proved to be superior to bulk DNA samples in identifying genetic diversity of landraces. A total of 330 alleles were detected in the 11 landraces. According to the results of the individual DNA sampling analysis, estimates of the mean number of alleles & A &, the effective allelic number & A e &, the observed heterozygosity & H o &, and expected heterozygosity & H e & were 7.86, 3.90, 0.69, and 0.37, respectively. An obvious genetic deviation from Hardy-Weinberg expectation was observed both among and within landraces and a considerable genetic variation was revealed within rather than among landraces. In addition, genetic diversity of landraces was greater in Sichuan than in the other three regions. It can be concluded that maize landraces in southwest China were initially introduced to Sichuan and from there to adjacent areas.
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
... 迄今,国内外关于玉米遗传多样性的报道,主要集中在自交系种质资源评估和杂种优势群划分[2,3, 11,12,13,14,15]或地方品种遗传多样性分析[1, 16,17] ...
中国农科院作物所
对年中国主要玉米杂交种生产和年全国大区区域试验的资料的分析表明:我国玉米杂交种生产已完全进入单交种时代,国内系×国外系的杂交种面积增加较多,1987年已达到百万亩以上杂交种总面积的65.68%。玉米杂交种的亲本系利用更趋集中,1987年自330、黄早四和Mo17的面积已分别占百万亩以上杂交种总面积的11.43%、14.61%和28.29%,我国玉米种质基础更趋狭窄。我国玉米新自交系的主要来源是单交组合(42.3%),综合种或群体(13.4%),地方品种(12.6%)和回交(10.6%)。近几年由于育成了一批新系和新杂交种,产量育种水平有所提高。
... 【本研究切入点】相对于玉米自交系而言,育成杂交种的报道极少,在中国仅有早期基于形态或系谱对杂交种的分析[18],2005年国家预试品种分析[19]或省内推广品种的分析[20,21] ...
... 【本研究切入点】相对于玉米自交系而言,育成杂交种的报道极少,在中国仅有早期基于形态或系谱对杂交种的分析[18],2005年国家预试品种分析[19]或省内推广品种的分析[20,21] ...
... 表明两组的育种资源具有部分相似性,如两组中黄改系的应用[19] ...
. ):991-998
Maize Research Institute, Sichuan Agricultual University/ Key Laboratory of Crop Genetic Resources and Improvement, Ya’an 625014, Sichuan, China
Many maize breeders have been paying attention and efforts to solve the problem of narrow genetic diversity in maize. In order to broaden the genetic basis in maize breeding, it is necessary to know the genetic diversity in the current maize hybrids. There may be two ways to study the genetic diversity in maize hybrids. One is to analyze the hybrids which have been widely applied in production and those in regional tests. Another is to analyze the parents of maize hybrids. Most former studies were directed to evaluate the genetic diversity of the parents and few directed to study the hybrids. In present study, analyses of phenotypic characters, SSR molecular markers and pedigrees were made to study the genetic diversity in 186 maize hybrids that were tested in the regional trials of Sichuan and Southwest China.
The results showed that the variation coefficients of plant height, ear height, days to silking, pollen shedding, ASI, ear length, fertile kernel, kernel depth, cob diameter, ear diameter, rows per ear, kernels per row, ear weight, cob weight, yield per plant, fresh weight per ear, water content, kernel rate, 100-kernel weight and test weight among 186 hybrids were 5.74%, 12.06%, 2.63%, 2.36%, 8.50%, 9.68%, 5.80%, 10.57%, 9.32%, 6.02%, 7.90%, 10.54%, 15.95%, 21.51%, 16.19%, 13.85%, 10.35%, 2.46%, 10.92%, and 4.93%, respectively. There were differences in the variation coefficients of different character, but all of the variation coefficients changed in a small range. Sixty pairs of SSR primer distributed on the ten chromosomes of maize produced stable amplified bands and 608 alleles were detected among the hybrids. The average number of alleles per locus was 10.1 with a range from 3 to 23. The values of polymorphism information content (PIC) for each SSR locus varied from 0.5179 to 0.9256 with an average of 0.7826. The genetic similarities of SSR marker pattern among the 186 hybrids ranged from 0.6067 to 0.9162, with an average of 0.7722. There were 16499 pairs of genetic similarity, in which 96.9% were 0.7000 to 0.9256. The cluster analysis showed that the hybrids could be classified into ten clusters, with 88.2% of the hybrids included in Cluster 4, Cluster 8 and Cluster 10. The analysis of pedigree sources of 51 hybrids showed that 36 hybrids had close genetic relationships with the hybrids of Pioneer Company developed in late 1980s and early 1990s in the United States, such as “Y78599”, “Y7865”, “Y78698”, accounting for 70.58%. Meanwhile 13 hybrids had close genetic relationship with “Y78599", accounting for 8.66%. The genetic similarities of SSR marker pattern among the 51 hybrids ranged from 0.661 92 to 0.8799, with an average of 0.7686. There were 1 196 pairs of genetic similarities ranged between 0.7000 and 0.8796, accounting for 93.80% of all the genetic similarity pairs. The cluster analysis showed that 88.2% of the 51 hybrids were in Cluster 4, Cluster 8, and Cluster 10. It was indicated that the similarity was high and the genetic diversity was narrow among the 186 hybrids. It is necessary to broaden the genetic basis of breeding germplasm in maize.
采用表型性状分析、SSR标记和系谱分析对186个区试及引种试验玉米组合进行遗传多样性分析。结果表明,各组合间20个表型性状都变异在一个较小的范围内;利用筛选出的60对扩增条带清晰、具明显多态性的SSR引物,共检测到608个等位基因,每对引物检测到3~23个等位基因,平均为10.1个;SSR多态信息量(PIC)分布范围为0.6,平均值为0.个组合的遗传相似系数变幅在0.2之间,平均值为0.7722,相似系数在0.7000以上的组合有16 499对,占96.9%,供试材料分为10类,且88.2%的组合集中在第4、8、10类;51个系谱清楚的组合中有36个(占70.58%)与美国的PN种质有密切关系。以上结果均表明,供试组合相似程度较高,遗传差异较小,遗传基础相对单一,进一步拓展玉米种质遗传基础仍然显得十分必要。
... 【本研究切入点】相对于玉米自交系而言,育成杂交种的报道极少,在中国仅有早期基于形态或系谱对杂交种的分析[18],2005年国家预试品种分析[19]或省内推广品种的分析[20,21] ...
... 【本研究切入点】相对于玉米自交系而言,育成杂交种的报道极少,在中国仅有早期基于形态或系谱对杂交种的分析[18],2005年国家预试品种分析[19]或省内推广品种的分析[20,21] ...
1.Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany 2.Crop Science Department, University of Illinois, S-110 Turner Hall MC 046 1102 S Goodwin Ave Urbana Champaign, Illinois, 61801 USA
It has been claimed that the system that delivers the products of plant breeding reduces the diversity of cultivated varieties leading to an increased genetic vulnerability. The main goal of our study was to monitor the temporal trends in genetic diversity over the past five decades among maize cultivars with the largest acreage in Central Europe. Our objectives were to (1) investigate how much of the genetic diversity present in important adapted open-pollinated varieties (OPVs) has been captured in the elite flint germplasm pool, (2) examine changes in the genetic diversity among the most important commercial hybrids as well as in their dent and flint parents, (3) analyze temporal changes in allele frequencies between the dent and flint parental inbreds, and (4) investigate linkage disequilibrium (LD) trends between pairs of loci within the set of parental dent and flint lines. We examined 30 individuals of five prominent OPVs from Central Europe, 85 maize hybrids of economic importance, and their dent and flint parental components with 55 SSRs. LD was significant at probability level P =0.01 for 20.2% of the SSR marker pairs in the 82 dent lines and for 17.2% in the 66 flint lines. The dent and flint heterotic groups were clearly separated already at the beginning of hybrid breeding in Central Europe. Furthermore, the genetic variation within and among varieties decreased significantly during the five decades. The five OPVs contain numerous unique alleles that were absent in the elite flint pool. Consequently, OPVs could present useful sources for broadening the genetic base of elite maize breeding germplasm.
... 国外玉米杂交种的研究主要是欧洲近50年来育成品种的遗传多样性分析[22] ...
... 参考Reif等[22]针对于杂交种分析方法,在本研究中选用多变量统计分析软件MVSP ver ...
... 2 基因组DNA提取供试品种总DNA提取采取CTAB大量提取法,具体步骤按照CIMMYT(International Maize and Wheat Improvement Center)实验操作流程[23] ...
... 采用10重PCR产物电泳检测的方法,即按照扩增片段大小和荧光染料的种类可将10对引物的扩增产物混合在一起电泳[24] ...
... 根据40对核心引物等位基因信息表对上述原始数据进行等位基因确定,并形成标准DNA指纹数据,该等位基因信息表由北京市农林科学院玉米研究中心通过在毛细管荧光电泳系统分析大量自交系和杂交种数据总结整理得到[25] ...
... 25软件[26],基于328份玉米品种数据分析每对引物的等位基因数目和PIC值(polymorphism information content) ...
... 31[27]分析各区试组之间的Nei遗传距离[28] ...
... 31[27]分析各区试组之间的Nei遗传距离[28] ...
... 杂交种各区试组之间的遗传距离:以8个区试组别为单位分析各组别之间的Nei [28]遗传距离(表3) ...
... 另一方面也与作物本身的特征有一定的关系,小麦、水稻属于自交授粉并且大部分品种属于常规育种,而玉米属于杂交授粉而且目前全部是单交种,因此玉米类群本身遗传变异相对大,根据Buckler等[29]的报道玉米种内的遗传变异非常高以至于2份玉米品种之间的平均差异度比人类和灵长类之间差异还大 ...
中国328个玉米品种(组合)SSR标记遗传多样性分析
[王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航]

我要回帖

更多关于 兼并引物 的文章

 

随机推荐