什么是四象限模拟乘法器电路

每个时代都有一群爱“玩”的人,比如瓦特玩出了蒸汽机,……
近年来,以智能手机、智能硬件为代表的电子产品技术飞速……
泰克今年已经成立70周年了,甚至比仙童半导体、英特尔等……
孩子是父母一生的牵挂,但是由于很多现实问题,父母和孩……
演讲人:郭文兵时间: 10:00:00
演讲人:谢亦峰时间: 10:00:00
演讲人:陈杰时间: 10:00:00
预算:小于¥1,000预算:¥50,000-¥100,000
四通道四象限模拟乘法器MLT04
1 MLT04的结构功能和主要特点
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量?电压或电流?相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。在目前的乘法器中,单通道器件(如MOTOROLA的MC1496)无法实现多通道的复杂运算;二象限器件(如ADI公司的AD539)又会使负信号的应用受到限制。而ADI公司的 MLT04则是一款完全四通道四象限电压输出模拟乘法器,这种完全乘法器克服了以上器件的诸多不足之处,适用于电压控制放大器、可变滤波器、多通道功率计算以及低频解调器等电路。非常适合于产生复杂的要求高的波形,尤其适用于高精度CRT显示系统的几何修正。其内部结构及引脚排列如图1所示。
MLT04是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。温度漂移小于0.005%/℃。0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz通道的总静止功耗也仅为150mW。MLT04的工作温度范围为-40℃~+85℃。
MLT04的其它主要特性如下:
●四个独立输入通道;
●四象限乘法信号;
●电压输入电压输出;
●乘法运算无需外部元件;
●电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%;
●具有优良的温度稳定性:0.005% ;
●模拟输入范围为±2.5V,采用±5V电压供电;
●低功耗?一般为150mW。2 误差源和非线性
模拟乘法器的静态误差主要由输入失调电压、输出偏置电压、比例系数以及非线性度引起。在这四种误差源中,只有X和Y的输入失调电压可以由外部调整。而MLT04的输出偏置电压在出厂时已由厂家调整至50mV,比例系数在整个量程之内被内部调整为2.5%。MLT04的输入失调电压的误差可以采用图2所示的可变失调电压调整电路来消除。这种电路还可以减小乘法器内核中的输出偏置电压、增益误差以及非线性器件引起的固有误差。
乘法器的内部非线性是器件的固有误差。它指的是所有成对输入值的实际输出与理想的线性理论输出值之间的差值。其定义是在完全没有电流误差时,误差量与满刻度的百分比。在最坏的情况下,MLT04的X输入端的最大非线性也小于0.2%,Y输入端的最大非线性仅为0.06%。因此,在应用于调制解调器或是混频器时,最好将载波信号由X输入端输入,而实际信号由Y输入端输入。3 应用电路
3.1 乘法器
图3所示为乘法器的基本连接方法。四个独立通道中的每一个通道都是由两个单端电压输入(X和Y)和一个低阻抗电压输出(W)组成,而且每个通道都有自己专有的接地,这些接地都被接至模拟地。为了达到最好的性能,电路布局一定要紧凑并且连线要短,电源电压的馈电电流要旁路。不用的通道引脚要接地。
3.2 平方和倍频器
如需对输入信号进行平方运算,可将输入信号VIN并行的同时接到X和Y输入端以产生输出信号VIN/2.5V。这里的输入信号可以是任意极性,但得到的输出信号一定是正值。图4为平方运算电路。&&& 如果输入是正弦波VINsinωt,由以下的三角公式可知,平方电路也可以作为倍频器:
(VINsinωt)2/2.5V=V2IN(1-cosωt)/(2×2.5V)
由上式还可看出,输出中含有直流部分,直流随着输入VIN的变化会发生很大变化。通过高通滤波器可以除去MLT04输出中的直流偏置。为了得到理想的频率特性,高通滤波器的截止频率应该接近输入信号的基频。
这种配置中的一个基本误差源是X和Y输入端的失调电压。输入的失调电压和输入信号混在一起将导致输出波形失真。为了解决这一问题,图5电路中,利用双运放OP285提供的反相放大器可以调整X和Y输入端的失调。&&& 此外?通过反乘法器配置还可利用MLT04来设计除法器和平方根函数发生器等电路。
3.3 压控低通滤波器
图6所示是用模拟乘法器MLT04构成的一个压控低通滤波器。比传统的滤波器配置相比?这种技术的好处在于滤波器的截至频率ω0直接正比于乘法器的输入电压。这使得滤波器中的电容可以由电压控制,从而可以直接或间接调整。这样?滤波器的频率特性就可以在不影响其它参数的情况下由一个单独的电压进行控制。&&& 图6中,当VX从25mV变化到2.5V时,滤波电路的截至频率也将从1kHz变化到100kHz。因此,利用这种方法可以构造出中心频率、通带增益以及Q值等参数由直流电压控制的滤波器。
在收购Instagram及行动照片分享公司Lightbox后,Facebook终于正式迎来今年最重要的工作--IPO。Facebook正式确认将以US$38的价格发售421,233,615股,并将于今天开始招股至5月22日。其在NASDAQ......关键字:
腾讯起初并没有打算布局云计算,与腾讯广告、游戏相比,&云&一定不是盈利率最高的产品。但腾讯云的价值越发凸显,腾讯云即将对外开放什么?《商业价值》预测:腾讯准备在用技术耦合更多互联网开发者,打造......关键字:
目前高通仍是移动芯片市场的老大,但面对移动芯片市场的竞争及外部竞争环境的变化,其感受到的压力越来越大。高通出于缓解自身压力和开拓市场(有前景的市场,且与移动市场密切相关)的战略之需,很有并购AMD的必要,当......关键字:
&风水轮流转,明年到我家&,这可以说是少数的几句&放之四海而皆准&的真理了。想想几乎快要破产,现在却奉为&标榜&时尚的苹果;思量当年山寨机群魔乱舞的时候,瞧瞧现在国产......关键字:
我 要 评 论
热门关键词求一个四象限模拟乘法器电路设计_百度知道
求一个四象限模拟乘法器电路设计
输入电压的 还有其详细参数 基于multisium
我有更好的答案
一个四象限模拟乘法器电路设计 JEN
其他类似问题
为您推荐:
四象限的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁低压高频四象限模拟乘法器电路工作原理
低压高频四象限模拟乘法器电路工作原理
发布: | 作者:-- | 来源: -- | 查看:326次 | 用户关注:
& & &前 言
& & 四象限模拟乘法器是模拟信号处理系统中的基本的组成单元,它被广泛地应用于调制与解调、检波、频率变换、自动增益控制、模糊系统和神经网络等许多模拟信号处理电路中。已有一些CMOS四象限电流乘法器被提出,归纳起来,它们的设计方法可以分成2类;开关电容方法和连续时间方法。基于开关电容方法的乘法器设计方案,存在一
& & &前 言
& & 四象限模拟乘法器是模拟信号处理系统中的基本的组成单元,它被广泛地应用于调制与解调、检波、频率变换、自动增益控制、模糊系统和神经网络等许多模拟信号处理电路中。已有一些CMOS四象限电流乘法器被提出,归纳起来,它们的设计方法可以分成2类;开关电容方法和连续时间方法。基于开关电容方法的乘法器设计方案,存在一些问题,诸如时钟馈通现象,带宽有限信号和频谱混叠等。此外,要求精准的时钟和更大的芯片面积。很多乘法器是基于连续时间方案而设计的。目前,有3种方案可以实现连续时间模拟乘法器。第1种方法是使用工作在饱和区或亚阈值区的MOS管的线性跨导原理去实现。这种方法的优点就是电路的功耗低,但是电路的动态范围非常小,运算速度也慢。第2种方法是基于使用工作在饱和区的MOS管平方律特性的电流模平方根电路和平方电路去实现。但是,这种方案实现的乘法器的功耗大,这类乘法器要求所有的输入信号都需要加偏置电流,从而使MOS管工作在饱和区。最后一种方案是采用AB类的电流模单元电路。它不需要给输入信号加偏置电流。AB类的CMOS电流乘法器已经见于报道。文献提到的电路由2个AB类的电流模单元相互交叉连接组成。它的改进型电路使用了电流传输器(CCII),在文献中提到了,这种改进型电路进一步减小了输入阻抗。该电路允许提供更大的栅源电压,同时电路的精度很大地提高了。但是在他们的设计中,输出电流不会是真正的乘法实现。另外,由于PMOS管的载流子的低移动性,电路的频率响应大大地受到了限制。
& & 一种不依赖于MOS管参数的电流乘法器在文献中被提到了。这种电流乘法器的优点是尽管输入电流在变化,输入电阻仍然保持常数。然而这种电路要求提供5V的供电电压,限制了其在高供电电压系统中的应用。而且该电路的工作频率相当低,功耗高。文献中提到了一种低压CMOS电流乘法器。该电路是由所有MOS管都工作在饱和区的2个电流镜背对背连接组成。虽然这种背对背的电流镜结构,组合在一起,增加了带宽,但由于PMOS管的速度低,这种电路仍然不能工作在高频电路中。文献中提到了一种高频电流乘法器。该电路是由4个二次单元电路组成。这种二次单元是由3个偏置工作在饱和区的NMOS管组成的。这种对称结构带来了较低的谐波失真。但是这种电路存在衬底效应,因此不能工作在特别高的频率,它的-3dB带宽只有41MHz。
& & 本文提出了一种高频四象限电流乘法器。该乘法器电路结构对称。提出的乘法器电路工作在&1.18V的电源电压下。由于从输人端到地的低寄生电容,该电路可以工作在高频条件下,实验测得它的-3dB带宽可以达到1.741GHz。
& & 1电路工作原理
& & 本文提出的这种电流乘法器是基于图1所示的基本的单元电路而设计成的。图1所示的电路,输出电流Iout和输入电流Iin是二次函数的关系。这种二次单元电路是由MN、MP和MC组成的。其中MN和MP是偏置工作在三极管区,MC是工作在饱和区。如果MN和MP有相同的跨导因子(kP=&PCOXWP/LP=kN=&NCOXWN/LN=k),从图1可以很容易得到输入电压Vin和输出电流的Iout的表达式如下:
& & 很显然,二次单元电路带来了输出电流和MOS管漏极电流的二次函数的关系。在图2中显示了提出的四象限电流乘法器电路。图2中用到的电流模减法器电路如图3所示。这里用到的减法器不同于文献中的电压减法电路。图2电路是由4个二次单元电路构成。该乘法器的输入电流是输入电流IX和IY的和与差。通过使用由式(2)所得到的输出电流和输入电流的二次关系,可以得到MOS管MC1,MC2,MC3和MC4的漏极电流的表达式如下:
& & 从图2可以看出,由于IO1是IC1和IC2的和,而IO2是IC3和IC4的和,因此可以推导出IO1和IO2表达式如下:
& & 这种四象限乘法器的输出电流Iout是IO1和IO2的差,由如下表达式给出:
& & 可以看到在公式(9)中,输出电流IOUT等于电流IX和IY的乘积,伴有一个由跨导因子K和依赖于电源的参数a决定的乘法增益因子。很显然,可以通过调节跨导参数k和参数a,来调节乘法器的增益。参数k和MOS管的尺寸直接相关。减小跨导参数k或MOS管的尺寸,带来了较高的增益和较低的功耗,同时由于与MOS管相关的较小的寄生电容的作用,使得电路的速度也改进了。但是,减小参数k,仍需慎重考虑。因为较小的跨导参数k会带来较低的线性度和较小的静态电流,而这会降低输入电流的范围。相反,大的参数值k会带来较大的静态电流,因此会有较大的电流输入范围。但是这就会增加电路的总功耗。显然,参数k的选择要求最佳化。当然,也可以通过调节电源依赖因子a来调节调节电路的增益。a的大小直接决定了电路的功耗和输人工作电流的范围。
& & 2电路仿真结果
& & 对图2所示乘法器的性能使用Hspice仿真软件进行仿真验证,其中MOS晶体管模型参数由标准的0.35&MCMOS工艺提供。所有NMOS管和PMOS管的阈值电压分别为0.53~0.69V。MOS管的宽长比设置如下:M1P~M4P,60&m/0.7&m,MIN~M4N,20&m/0.7&m,MC1~MC4,25&m/0.7&m,M5~M8,25&m/0.7&m。电源电压为&1.18V。图4显示了电流乘法器电路在输入电流IY在-20~20&A范围内变化时的直流传输特性曲线。在图4中,从右下到右上的5条曲线分别是输入电流IX为-20&A,-10&A,0&A,10&A和20&A时的输出电流Iout随输入电流IY变化的直流传输特性曲线。
& & 图5显示了提出的乘法器电路的频率响应曲线。在仿真过程中,输入电流IX为正弦信号电流,同时输入电流IY保持为10&A。由图5可以看到,电路的电流标准分贝增益随频率变化,所设计的乘法器电路展示出了良好的频率特性,得到的-3dB带宽为1.741GHz,远远超过了文献中提到的(413MHz)。这是由于电路中从输入端到地的寄生电容减小的缘故。整个电路的功耗为1.18mW。
& & 本文提出了一种低压高频四象限电流乘法器电路。该乘法器电路的优点是电路结构简单而且对称。电路可以工作在高频条件下(f-3dB=1.741GHz),整个电路的功耗为1.18mW。
本页面信息由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
&&& 目前,处理器性能的主要衡量指标是时钟频率。绝大多数的集成电路 (IC) 设计都基于同

我要回帖

更多关于 乘法器电路 的文章

 

随机推荐