哪些是分泌蛋白?分泌蛋白的合成和运输过程中经历了哪些细胞器的结构和功能或细胞结构?此过程需要能量吗?

( ̄▽ ̄)~*高等植物细胞有哪些主要细胞器?这些细胞器的组成和结构特点与生物学功能有何联系?
〨н『ゞ┅
给你个有史以来最全的,跪求加分
植物细胞器小结
细胞器是细胞质的基质中具有一定形态和功能,并有被膜的结构。
细胞器分为:线粒体;质体(叶绿体、有色体、白色体);内质网;高尔基体;核糖体;溶酶体;微体;液泡;细胞骨架。
线粒体是细胞进行有氧呼吸的主要场所。又称”动力车间”.
叶绿体是绿色植物进行光合作用的场所。
内质网是蛋白质合成和加工的场所。
高尔基体对来自内质网的蛋白质加工,分类和包装的场所。
核糖体是生产蛋白质的场所。
溶酶体分解衰老,损伤的细胞器,吞噬并杀死入侵的病毒或细菌。
液泡是调节细胞内的环境,是植物细胞保持坚挺。含有色素。
内质网(endoplasmic reticulum)
一般真核细胞中都有内质网,只有少数高度分化真核细胞,如人的红细胞以及原核细胞中没有内质网。在电镜下可以看到内质网是一种复杂的内膜结构,它是由单层膜围成的扁平囊状的腔或管,这些管腔彼此之间以及与核被膜之间是相连通的。内质网按功能分为糙面内质网(rough ER)和光面内质网(smooth ER)两类。糙面内质网上所附着的颗粒是核糖体,它是蛋白质合成的场所。因此糙面内质网最主要的功能是合成分泌性蛋白质,膜蛋白以及内质网和溶酶体中的蛋白质。所合成蛋白质的糖基化修饰及其折叠与装配也都发生在内质网中。其次是参与制造更多的膜。 光面内质网上没有核糖体,但是在膜上却镶嵌着许多具有活性的酶。光面内质网最主要的功能是合成脂类,包括脂肪、磷脂和甾醇等。
核糖体(ribosome)
核糖体是蛋白质合成的场所,它是由rRNA和蛋白质构成的,蛋白质在表面,rRNA在内部,并以共价键结合。核糖体是多种酶的集合体,有多个活性中心共同承担蛋白质合成功能。而每个活性中心又都是由一组特殊的蛋白质构成,每种酶或蛋白也只有在整体结构中才具有催化活性。
每一细胞内核糖体的数目可达数百万个,游离核糖体合成细胞质留存的蛋白质,如膜中的结构蛋白;而附在内质网上的核糖体合成向细胞外分泌的蛋白质,合成后向S-ER输送,形成分泌泡,输送到高尔基体,由高尔基体加工、排放。
高尔基体(Golgi apparatus)
由一系列扁平小囊和小泡所组成,分泌旺盛的细胞,较发达。在电镜下得到确认的高尔基体是由单层膜围成的扁平囊和小泡,成堆的囊并不像内质网那样相互连接。在一个细胞中高尔基体只有少数几堆,至多不过上百。
(1)是细胞分泌物的最后加工和包装的场所,分泌泡通过外排作用排出细胞外
(2)能合成多糖,如粘液,植物细胞的各种细胞外多糖。
溶酶体(lysosomes)
溶酶体是由单层膜包裹的小泡,数目可多可少,大小也不等,含有60多种能够水解多糖,磷脂,核酸和蛋白质的酸性酶,这些酶有的是水溶性的,有的则结合在膜上。溶酶体的pH为5左右,是其中酶促反应的最适pH。 根据溶酶体处于,完成其生理功能的不同阶段,大致可分为:初级溶酶体,次级溶酶体和残余小体。 溶酶体的功能有二:一是与食物泡融合,将细胞吞噬进的食物或致病菌等大颗粒物质消化成生物大分子,残渣通过外排作用排出细胞;二是在细胞分化过程中,某些衰老细胞器和生物大分子等陷入溶酶体内并被消化掉,这是机体自身重新组织的需要。
线粒体(mitochondria)
线粒体具有双层膜结构,外膜是平滑而连续的界膜;内膜反复延伸折入内部空间,形成嵴。内外膜不相通,形成膜腔。光镜下,线粒体成颗粒状或短杆状。线粒体是细胞内产生ATP的重要部位,是细胞内动力工厂或能量转换器。线粒体具有半自主性,腔内有成环状的DNA分子和核糖体,它们都能自行分化,但是部分蛋白质还要在胞质内合成。
叶绿体(chloroplas)
高等植物叶绿体外行如凸透镜,具有双层膜结构,两膜间没有联系。在叶绿体内部存在复杂的层膜结构,它悬浮于基质中,这些层膜又叫类囊体(thylakoids),与叶绿体内膜可能无联系。类囊体也是双层膜结构,呈扁盘状。类囊体通常是几十个垛叠在一起而成为基粒(grana),类囊体膜上有光合作用的色素和电子传递系统。
在绿色植物和藻类中普遍存在的叶绿体是光合作用场所。同时叶绿体也有自己特有的双链环状DNA,核糖体和进行蛋白质生物合成的酶,能合成出一部分自己所必需的蛋白质,因此叶绿体内共生起源假说为许多人所认可。
微体(microbodies)
含有酶的单层膜囊泡状小体,与溶酶体功能相似,但所含的酶不同于溶酶体。微体在短时间内帮助多种物质转换成别的物质。
过氧化物酶体(peroxisomes)是存在于动植物细胞的一种微体,其中所含的一些酶可将脂肪酸氧化分解,产生过氧化氢。
乙醛酸循环体(glyoxisome)存在与富含脂类的植物细胞中,其中一些酶能将脂肪酸核油转换成酶,以供植物早期生长需求。
液泡(vacuole)
在成熟的活的植物细胞中经常都有一个或数个大的充满液体的中央液泡,是在细胞生长和发育过程中由小的液泡融合而成的,是单层膜包围的充满水液的泡。液泡中含有无机盐、氨基酸、糖类以及各种色素等代谢物,甚至还含有有毒化合物,并处于高渗状态,使细胞处于吸涨饱满的状态。
细胞骨架(cytoskeleton)
在真核细胞的细胞质中普遍存在由蛋白质纤维组成的三维网架结构―细胞质骨架,蛋白质纤维包括有微管,微丝和中间纤维三种,它们通过通过磷酸化和去磷酸化而具有自装配和去装配功能,这也是信息传递过程。细胞质中各种细胞器,酶和很多蛋白质都是固定在细胞质骨架上,使之有条不紊地执行各自的功能。
细胞质骨架网络系统对于细胞形态构建,细胞运动,物质运输,能量转换,信息传递,细胞分化和细胞转化等起着重要的作用。
微丝(microfilaments)
微丝(肌动蛋白纤维)是指真核细胞中由肌动蛋白组成的骨架纤维。微丝的功能:肌肉收缩,微绒毛,应变纤维,胞质环流和阿米巴运动,胞质分裂环。
微管(microtuble)
微管由α,β两种类型的微管蛋白亚基组成,两种蛋白形成微管蛋白二聚体,是微管装配的基本单位。微管是由微管蛋白二聚体组成的长管状细胞器结构,微管壁由13个原纤维排列组成,微管可装配成单管,二联管(纤毛和鞭毛中),三联管(中心粒和基体中)。微管的功能:维持细胞形态,细胞内运输,鞭毛运动和纤毛运动,纺锤体和染色体运动,基粒与中心粒。
中间纤维(Intermediate filaments)
中间纤维蛋白合成后基本上都装配成中间纤维,游离的单体很少。在一定生理条件下,在植物细胞中也存在类似中间纤维结构。中间纤维按其组织来源和免疫原性可分为6类:角蛋白纤维,波形纤维,结蛋白纤维,神经纤维,神经胶质纤维和核纤层蛋白。 中间纤维与微管关系密切,可能对微管装配和稳定有作用。此外,中间纤维从核纤层通过细胞质延伸,它不仅对细胞刚性有支持作用和对产生运动的结构有协调作用,而且更重要的是中间纤维与细胞分化,细胞内信息传递,核内基因传递,核内基因表达等重要生命活动过程有关。
鞭毛、纤毛和中心粒
(flagellum, cilium, centrioles)
细胞表面的附属物,功能是运动。鞭毛和纤毛的基本结构相同,主要区别在于长度和数量。鞭毛长但少,纤毛短,常覆盖细胞全部表面,两者的基本结构都是微管。基部与埋藏在细胞质中的基粒(9(3)+0)相连。中心粒,结构与基粒相似,埋藏在中心体中,许多微管都发自这里。
胞质溶胶(cytosol)
细胞质中除细胞器以外的液体部分。富含蛋白质,占细胞内的25~50%;含有多种酶,是细胞代谢活动的场所;还有各种细胞内含物,如肝糖原、脂肪细胞的脂肪滴、色素粒等。
Copyright &
All Rights Reserved.&&分泌蛋白在合成和分泌的过程中一次经过的细胞结构是?
分泌蛋白在合成和分泌的过程中一次经过的细胞结构是?
为什么有的地方是核糖体,内质网,高尔基体,细胞膜。而有的地方又说是核糖体,内质网,高尔基体,线粒体。到底是什么?
补充:我只是想问,到底是前者还是后者,谢谢!
前者,线粒体是来提供能量的啊
的感言:我也是这么认为的,只是有一次考试的时候说是错了,才问一下的,谢了
其他回答 (3)
叶绿体 中心体 溶酶体
内质网,高尔基体,线粒体的共同作用产生的
分泌蛋白是指酶、抗体、部分激素等在细胞内合成后分泌到细胞外起作用的蛋白质
(一)蛋白质的引导:
蛋白质的运输尽管比较复杂,但是生物系统中的蛋白质的运输可以用一个比较简单的模式来解释。每个需要运输的多肽都很有一段氨基酸序列,称为信号肽序列,引导多肽到不同的转运系统。
信号肽及其作用机制
70年代初期,许多研究发现,在编码分泌蛋白的基因中,许多基因的5'端都有一段DNA编码的15~35个氨基酸的疏水性肽片段,这一位于蛋白质N——末端的肽段在成熟的分泌蛋白中并不存在,其功能在于引导随后产生的蛋白质多肽链穿过内质网膜进入腔内。这一段疏水性短肽在蛋白质的内质网——高尔基体——质膜分泌途径中具有重要作用,并被称之为信号肽。
1975年,布洛贝尔提出了信号肽假说。根据这一假说,在细胞质中,编码分泌蛋白的信使核糖核酸(mRNA)与游离的核糖体大小亚基结合而形成翻译复合体。从起始密码子开始,首先翻译产生信号肽,当转译进行到大约50~70个氨基酸之后,信号肽开始从核糖体的大亚基上露出,露出的信号肽立即被细胞质中的信号肽识别体(SRP)识别并与之相结合。此时,转译暂时停止,SRP牵引这条带核糖体的mRNA到达粗面内质网的表面,并与粗面内质网表面上的信号肽识别体受体(或称停泊蛋白)作用,这时,暂时被抑制的转译过程恢复进行,同时,内质网膜上某种特定的核糖体受体蛋白聚集,使膜双脂层产生孔道,带mRNA的核糖体与其受体蛋白结合,转译出的肽链便通过孔道进入内质网腔内。
信号肽在穿越膜后即被内质网腔内的信号肽酶水解切除。当核糖体与其受体蛋白结合后,SRP与停泊蛋白便解离,各自进入新的识别、结合循环。当转译进行到mRNA的终止密码子时,蛋白质的合成结束,核糖体的大小亚基解聚,大亚基与核糖体受体的相互作用消失,核糖体受体解聚,内质网膜上的蛋白孔道消失,内质网恢复成完整的脂双层结构。进入内质网腔内的多肽链在信号肽被水解切除后即进行折叠及其他一系列修饰过程,最终形成成熟的分泌蛋白。
(二)分泌蛋白在内质网(ER)内合成
在真核细胞中,内质网是最大的膜状结构的细胞器,其表面积可以是质膜面积的几倍。大部分的内质网与核糖体相结合形成糙面内质网,在糙面内质网上的核糖体是膜蛋白和分泌蛋白合成的地方,也是蛋白质分泌途径的起点 。多肽经移位后,在内质网的小腔中被修饰,通过短时间的加工后,分泌蛋白形成被膜包裹的小泡,转运到高尔基体,然后再转运到细胞表面或溶酶体。
1、蛋白质的修饰与加工
这些修饰包括糖基化、羟基化、酰基化、二硫键形成等,其中最主要的是糖基化,几乎所有内质网上合成的蛋白质最终被糖基化。糖基化的作用是: ①使蛋白质能够抵抗消化酶的作用;②赋予蛋白质传导信号的功能;③某些蛋白只有在糖基化之后才能正确折叠。
糖基化有两种类型:(1)糖蛋白是由寡糖连接在Asp的氨基的形成的,连接的链叫N-糖苷键。(2)寡糖连接在Ser、Thr或羟基-lys的羟基上(O-糖苷键)。N-糖苷键是在ER开始,而在高尔基体中进一步完成;O-糖苷键的形成仅发生在高尔基体中。
N-糖基化可分为3步,各种N-连接的寡糖都是在ER中开始加上的,途径也相同。一个寡糖含有2个N-乙酰-糖胺,9个苷露糖和3个葡萄糖,在一种特异的脂一多萜醇上形成,多萜醇磷酸酯即是携带糖的载体。多萜醇是一种高度疏水的酯,位于ER膜中,其活性基团面向着ER腔,寡糖是由单个的糖连接而构成,它通过焦磷酸和多萜醇连接。寡糖作为一个单位在与膜结合的糖基转移酶的作用下从多萜醇上转移到靶蛋白上。酶的活性位点也是露在ER腔中。受体基团是位于Asn-X-Ser或Asn-X-Thr(X是除Pro以外的任何氨基酸)中的Asn,当新生肽进入ER时,它一旦被识别后立即作为靶顺序暴露在腔中。有些寡糖的修整是在ER中进行,修整后再进入高尔基体。寡糖结构完成是分为两类,一类在转运到ER时,另一类是在越膜转运到高尔基体。究竟属于何种类型这要取决于苷露糖。苷露糖只是在ER中加上,随后可能还要被修整。在ER中被切去的单糖的数目是不同的。ER中的苷露糖苷酶很快地附着到第一个苷露糖上,附着下三个较慢。
高甘露糖寡聚糖含有的残基是在ER中加上的。寡糖加上后几乎立即又从蛋白上被切掉。3个葡萄糖残基被ER中的葡萄糖苷酶切除掉,ER中的甘露糖苷酶再从蛋白上切下2-4个甘露糖,在ER中产生3寡糖的最终结构。
2、新生肽链的折叠、组装,运输
在ER腔中折选和修饰是有关的,糖的连接对于正确的折叠是十分必要的。蛋白二硫异构酶可以改变二硫键,影响到折叠,它和特殊的ER蛋白的结合是必须的,此酶的某些活性或全部的活性可能是酶作为ER中的一种复合体的形式来实现的。即在越膜位点和蛋白结合才能发挥它的功能。
多肽经过内质网的加工、修饰、折叠后被膜包裹形成小泡转运到高尔基体在高尔基体进行进一步的加工。
(三)在高尔基体的进一步加工
高尔基体的主要有两方面的功能:一是对糖蛋白上的寡糖核作进一步的修饰与调整,二是将各种多肽进行分类并送往溶酶体、分泌粒和质膜的功能目的地。但蛋白质应送往哪里是由蛋白质本身的空间结构决定的。
高尔基体是由许多层袋状的膜结构组成的。糖蛋白的进一步糖基化修饰就是在这种膜结构中完成的,如复合寡聚糖就是在高尔基体中进一步修整和加上糖的残基。第一步是通过高尔基体的甘露糖苷酶Ⅰ修整甘露糖残基。然后单个的糖基由N-乙酰-葡萄糖胺转移加上,按着由高尔基体苷露糖苷酶Ⅱ继续切除苷露糖残基。
在高尔基体的修饰中都会产生内部核心,它是由NAc-Glc·NAc-GLc.Man3构成,最后要被剥去。末端区域加在内部核心下。末端区域的残基包括NAc-GLc,Gal和唾液酸(N-乙酰-神经氨[糖]酸。此加工的路径和糖基化是高度有序的,而且有两种类型的反应。一种糖残基的加入对于另一种糖基的剪切可能是必要的。如在最终剪除甘露糖之前要加上NAc-Glc。
现在还不知道加工过程中各种蛋白的降解,加工的模式及糖基化的信号是什么。据推测此信号在肽链的结构中,而不可能在寡糖中,因为N-糖苷键开始形成都是加上相同的寡糖。
经过高尔基体的进一步加工和分装,成熟的蛋白质通过小泡运到细胞表面或者是溶酶体。伴随各种具膜小泡的运输过程,细胞内形成了复杂的膜流,高尔基体在在膜流的调控中起枢纽的作用。
没有活性的前体蛋白,进行一个系列的翻译后加工后才能成为具有功能的成熟蛋白,各胞器之间有的明显分工但是个细胞器在分泌蛋白的形成和分泌过程中的又是相互联系密切相关的象糖基化就是在内质网上开始在高尔基体完成的
等待您来回答
药物领域专家温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
谢国富,原湖南永州籍教师,现任教于汕头市潮阳实验学校(全国示范性高中),高级教师,。曾在中学生物教学、中学生物学、生物学杂志、现代教育报、考试报、数理报(生物版)、升学指导报等刊物报上发表文章100余篇,担任过高三生物总复习资料的副主编工作。《现代教育报》的特约撰稿者。几届全国生物学联赛中二等奖共35人次,广东省联赛一等奖47人次。
LOFTER精选
阅读(873)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
loftPermalink:'',
id:'fks_',
blogTitle:'问答题整理--必修一第3章 细胞的基本结构',
blogAbstract:'&
1.细胞膜及其他生物膜的组成成分是什么?基本骨架是什么?
答: 组成成分: 脂质、蛋白质和少量的糖类。基本骨架: 磷脂双分子层
2.细胞膜功能的复杂程度与什么有关?细胞膜上与识别功能相关的物质是什么?
答:复杂程度与细胞膜上蛋白质的种类和数量;识别功能:糖蛋白
3.细胞膜的功能有哪些?其中完成细胞间信息交流的方式有哪3种?
答:功能: (1)、将细胞与外界环境分开(2)、控制物质进出细胞(3)、进行细胞间的物质交流',
blogTag:'',
blogUrl:'blog/static/',
isPublished:1,
istop:false,
modifyTime:0,
publishTime:6,
permalink:'blog/static/',
commentCount:4,
mainCommentCount:4,
recommendCount:0,
bsrk:-100,
publisherId:0,
recomBlogHome:false,
currentRecomBlog:false,
attachmentsFileIds:[],
groupInfo:{},
friendstatus:'none',
followstatus:'unFollow',
pubSucc:'',
visitorProvince:'',
visitorCity:'',
visitorNewUser:false,
postAddInfo:{},
mset:'000',
remindgoodnightblog:false,
isBlackVisitor:false,
isShowYodaoAd:false,
hostIntro:'谢国富,原湖南永州籍教师,现任教于汕头市潮阳实验学校(全国示范性高中),高级教师,。曾在中学生物教学、中学生物学、生物学杂志、现代教育报、考试报、数理报(生物版)、升学指导报等刊物报上发表文章100余篇,担任过高三生物总复习资料的副主编工作。《现代教育报》的特约撰稿者。几届全国生物学联赛中二等奖共35人次,广东省联赛一等奖47人次。',
hmcon:'1',
selfRecomBlogCount:'0',
lofter_single:''
{list a as x}
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}

我要回帖

更多关于 细胞器的结构和功能 的文章

 

随机推荐