生成麦芽糖糖脎铜绿生成的化学方程式式

什么是无机盐 无机盐 什么是无机盐[ 15:14:28]
专题分类:>>>
营养素中文名称:营养素英文名称:nutrient定义:
能提供动物生长发育维持生命和进行生产的各种正常生理活动所需要的元素或化合物。营养素是指食物中可给人体提供能量、机体构成成分和组织修复以及生理调节功能的化学成分。凡是能维持人体健康以及提供生长、发育和劳动所需要的各种物质称为营养素。人体所必需的营养素有蛋白质、脂肪、糖类、矿物质、维生素、水等六类。营养素营养素是指食物中可给人体提供能量、机体构成成分和组织修复以及生理调节功能的化学成分。凡是能维持人体健康以及提供生长、发育和劳动所需要的各种物质均称为营养素。现代医学研究表明,人体所需的营养素不下百种,其中一些可由自身合成、制造,但无法自身合成、制造必须有外界摄取的约有40余种,精细分后,可概括七大营养素:人体所必需的营养素有蛋白质、脂肪、糖、无机盐、维生素、水和纤维素等7类。 健康的继续是营养,营养的继续是生命。不论男女老幼,皆为生而食,为了延续生命现象,必须摄取有益于身体健康的食物。编辑本段七大营养素蛋白质七大营养素蛋白质是维持生命不可缺少的物质。人体组织、器官由细胞构成,细胞结构的主要成分为蛋白质。机体的生长、组织的修复、各种酶和激素对体内生化反应的调节、抵御疾病的抗体的组成、维持渗透压、传递遗传信息,无一不是蛋白质在起作用。婴幼儿生长迅速,蛋白质需要量高于成人,平均每天每公斤体重需要2克以上。肉、蛋、奶、豆类含丰富优质蛋白质,是每日必须提供的。注意:①搭配的原则如动、植物食品的搭配;多品种食物的搭配。②不过量提供的原则。婴幼儿期蛋白质热量占总热量12%~14%为宜,过多会影响蛋白质正常功能的发挥,造成蛋白质消耗,影响体内氮平衡。
③不过少提供的原则。蛋白质提供过少明显影响生长发育的速度,生化反应下降,抗病能力下降,甚至导致营养不良。结果不仅仅造成生长落后,还会因影响脑细胞发育,造成智力落后。脂肪维生素脂肪是储存和供给能量的主要营养素。每克脂肪所提供的热能为同等重量碳水化合物或蛋白质的2倍。机体细胞膜、神经组织、激素的构成均离不开它。脂肪还起保暖隔热;支持保护内脏、关 节、各种组织;促进脂溶性维生素吸收的作用。婴儿每天每公斤体重需要4克脂肪,动物和植物来源的脂肪均为人体之必需,应搭配提供。每日脂肪供热应占总热卡的20%~25%。脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。脂类也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。
碳水化合物饮食金字塔碳水化合物是为生命活动提供能源的主要营养素,它广泛存在于米、面、薯类、豆类、各种杂粮中,是人类最重要、最经济的食物。这类食物每日提供的热卡应占总热卡的60%~65%。任何碳水化合物到体内经生化反应最终均分解为糖,因此亦称之为糖类。除供能外,它还促进其他营养素的代谢,与蛋白质、脂肪结合成糖蛋白、糖脂,组成抗体、酶、激素、细胞膜、神经组织、核糖核酸等具有重要功能的物质。这类食物的重要性不言而喻,但也需提醒家长不要过早过多的加米粉;过多给孩子食物中加糖,这会导致肥胖,给孩子日后的健康埋下祸根。纤维素是不被消化的碳水化合物,但其作用不可忽视。纤维素分水溶性和非水溶性两类。非水溶性纤维素不被人体消化吸收,只停留在肠道内,可刺激消化液的产生和促进肠道蠕动,吸收水分利于排便,对肠道菌群的建立也起有利的作用;水溶性纤维素可以进入血液循环,降低血浆胆固醇编辑本段食物与营养素的关系食物中某种营养素的含量高,不一定其营养价值就高,要看它的整体营养素组成及其比例才能确定其营养价值高低。尽管如此,我们了解一下各种营养素含量较高的食物,对我们还是很有益的,有助于各种食物的合理搭配和重点补充某种特定的营养元素。动物性食物的蛋白质含量都较高,一般在20%左右,植物性食物中,蛋白质含量最高的要数大豆,每百克含36克。脂肪含量最高的动物性食品是猪肉,含60%左右,植物性食物是各种油料作物,其中又以芝麻含油最多,达61%。糖类含量最高的是各种谷物,其中又以稻米为最高,达77%,动物性食物中含糖类最高的是羊肝,达4%。维生素B1含量最高的食物是花生仁和豌豆,每百克分别含1.07毫克和1.02毫克。维生素B2含量最高的是羊肝、猪肝和紫菜,每百克分别含3.57毫克、2.11毫克和2.07毫克。尼克酸含量最高的食物是羊肝和牛肝,每百克分别含18.9毫克和16.2毫克。维生素C含量最高的食物是鲜枣和辣椒,每百克分别含540毫克和185毫克。维生素A含量最高的食物是各种动物肝脏和鸡蛋黄,如每百克鸡肝含50900国际单位,羊肝含29900国际单位,鸡蛋黄3500国际单位。
维生素D含量最高的食物是鱼肝油,每百克含8500国际单位。
维生素E含量最高的是麦胚芽油,每百克达149毫克。虾皮是含钙元素最多的食物,每百克含991毫克。虾皮和全脂牛奶粉是含磷元素最多的食物,每百克分别含有1805毫克和883毫克。黑木耳和海带是含铁元素最多的食物,每百克分别含185毫克和150毫克。此外,猪肝、牛肾和羊肾中含铁量也是很高的。海带是含碘最多的食物,每百克含2400毫克。生蚝和海蛎是含锌最多的食物,每百克含量达到71毫克和47毫克。
成份举例食物中某类营养素的营养价值不仅与含量有关,还与它的组分构成和营养效价有关。了解各类营养素含量较高的食物,有助于各种食物的合理搭配和重点补充某种特定的营养元素。动物性食物的蛋白质含量都较高,一般在20%左右,植物性食物中,蛋白质含量最高的要数大豆,每百克含36克。脂肪含量最高的动物性食品是猪肉,含60%左右,植物性食物是各种油料作物,其中又以芝麻含油最多,达61%。碳水化合物含量最高的是各种谷物,其中又以稻米为最高,达77%,动物性食物中含糖类最高的是羊肝,达4%。维生素B1含量最高的食物是花生仁和豌豆,每百克分别含1.07毫克和1.02毫克。维生素B2含量最高的是羊肝、猪肝和紫菜,每百克分别含3.57毫克、2.11毫克和2.07毫克。尼克酸含量最高的食物是羊肝和牛肝,每百克分别含18.9毫克和16.2毫克。维生素C含量最高的食物是鲜枣和辣椒,每百克分别含540毫克和185毫克。维生素A含量最高的食物是各种动物肝脏和鸡蛋黄,如每百克鸡肝含50900国际单位,羊肝含29900国际单位,鸡蛋黄3500国际单位。维生素D含量最高的食物是鱼肝油,每百克含8500国际单位。维生素E含量最高的是小麦胚芽油,每百克达149毫克。含钙元素最多的食物是虾皮,每百克含991毫克。含磷元素最多的食物是虾皮和全脂牛奶粉,每百克分别含有1805毫克和883毫克。含铁元素最多的食物是黑木耳和海带,每百克分别含185毫克和150毫克。此外,猪肝、牛肾和羊肾中含铁量也是很高的。含碘最多的食物是海带,每百克含2400毫克。含锌最多的食物是生蚝和海蛎,每百克含量达到71毫克和47毫克。蔬菜营养丰富黄色胡萝卜比红色胡萝卜营养价值高,其中除含大量胡萝卜素外,还含有强烈抑癌作用的黄碱素,有预防癌症的功能用。科学家还发现,同一株菜的不同部位,由于颜色不胡萝卜同,其营养价值也不同,其营养价值也不同。大葱的葱绿部分比葱白部分营养价值要高得多,每100克葱白含维生素B1及维生素C的含量也不及葱绿部分的一半。颜色较绿的芹菜叶比颜色较浅的芹菜叶和茎含的胡萝卜素多6倍,维生素D多4倍。另外由于每种蔬菜所含营养素种类和数量各异,而人体的营养需要又是多方面的。在选用蔬菜时除了要注意蔬菜的颜色深浅外,还应考虑多种蔬菜搭配及蔬菜和肉食混吃。每一种青菜的营养素含量都会有些不同:颜色深的蔬菜比色浅的营养价值高,它们的排列顺序是绿色、红紫色、黄色、白色。绿色蔬菜有芥菜、油菜、青菜、苋菜、菠菜、芹菜等;红紫色蔬菜有紫甘蓝、红菜苔、紫扁豆、茄子等;黄色蔬菜有西红柿、胡萝卜、红薯、卷心菜等;白色蔬菜包括冬瓜、甜瓜、竹笋、茭白和菜花等。绿色蔬菜中含有丰富的叶绿素、胡萝卜素、维生素B1、维生素B2、维生素B12 、维生素C 以及钙、钾等;白色蔬菜主要含糖类和水分,营养价值远逊于前者。黄色(包括红色)蔬菜则介于两者之间。在同一种蔬菜中,颜色不同,其营养成分含量也不同。如紫色茄子比白色的营养价值高,红色胡萝卜比黄色的营养价值高。颜色深的蔬菜往往含有较多的生物活性物质,具有较强的抗氧化能力。水果中含丰富的有机酸和多种消化酶类,能帮助消化,促进食欲,增强肠胃蠕动,有利于排便、降低胆固醇。编辑本段缺乏营养素的后果缺乏营养素的各种症状缺不缺营养,这是很多人关心却不容易判断的问题,其实,身体会有意无意向我们发出种种营养缺乏的信号,提醒我们迅速找出应对之策。
■信号:头发干燥、变细、易断、脱发可能缺乏的营养:蛋白质、能量、必需脂肪酸、微量元素锌。营养对策:每日保证主食的摄入,以最为经济的手段为机体提供足够的能量。每日保证3两瘦肉、1个鸡蛋、250毫升牛奶,以补充优质蛋白质,同时可增加必需脂肪酸摄入。每周摄入2~3次海鱼,并可多吃些牡蛎,以增加微量元素锌。■信号:夜晚视力降低可能缺乏的营养:维生素A。如果不及时纠正,可能进一步发展为夜盲症,并出现角膜干燥、溃疡等。营养对策:增加胡萝卜和猪肝等食物的摄入。两者分别以植物和动物的形式提供维生素A,后者吸收效率更高。应注意的是,维生素A是溶解于油脂而不溶解于水的维生素,因此用植物油烹炒胡萝卜比生吃胡萝卜,维生素A的吸收效率可大为提高。■信号:舌炎、舌裂、舌水肿可能缺乏的营养:B族维生素。营养对策:洗米、蒸饭等可造成B族维生素的大量丢失。长期进食精细米面、长期吃素食,同时又没有其他的补充,很容易造成B族维生素的缺失。为此,应做到主食粗细搭配、荤素搭配。如果有吃素的习惯,每日应补充一定量的复合维生素B族药物制剂。■信号:牙龈出血可能缺乏的营养:维生素C。营养对策:维生素C是最容易缺乏的维生素,因为它对生存条件的要求较为苛刻,光线、温度、储存和烹调方法都会造成维生素C的破坏或流失。因此,每日应大量进食新鲜蔬菜和水果,最好能摄入1斤左右的蔬菜和2~3个水果,其中,蔬菜的烹调方法以热炒和凉拌结合为好。
■信号:味觉减退可能缺乏的营养:锌。营养对策:适量增加贝壳类食物,如牡蛎、扇贝等,是补充微量元素锌的有效手段。另外,每日确保1个鸡蛋、3两红色肉类和1两豆类也是补充微量元素锌所必需的。■信号:嘴角干裂可能缺乏的营养:核黄素和烟酸。营养对策:核黄素在不同食物中含量差异很大。动物肝脏、鸡蛋黄、奶类等含量较为丰富。为此,每周应补充1次猪肝、每日应补充250毫升牛奶和一个鸡蛋。应注意对谷类食品进行加工可造成维生素B1的大量丢失,如精白米维生素B1保存率仅有11%,小麦标准粉维生素B1保存率仅有35%,因此主食应注意粗细搭配。而烟酸主要来自动物性食物,特别是猪肝、鸡肝等。沛健蔬菜茶是由多种绿色有机蔬菜采用真空冰干技术脱水、碾磨、浓缩而成,保持天然原有色、香、味和营养成份,是补充多种维生素、排毒、调节人体酸碱平衡的天然绿色饮品一、主要配料牛蒡:富含胡萝卜素、蛋白质、钙和植物纤维,其特有的牛蒡酚是一种广效的抗癌物质;其特有的菊糖,是一种可促进性荷尔蒙分泌的精氨酸,有助于人体筋骨发达,增强体力及壮阳。西兰花:富含胡萝卜素、维他命C、硒等,长期食用椰菜花可以增强免疫力、减少罹患乳癌、直肠癌及胃癌的机率。红萝卜:含有丰富的胡萝卜素是有效的防癌物质;其叶酸有抗癌作用;胡萝卜有护肝明目、降压、降脂、降血糖的功能。香菇:香菇含有丰富的钙、磷、铁、维生素B1、维生素B2、尼克酸、维生素D、原香菇多糖、香菇太生、双链核糖核酸,是不可多得的保健食品之一。食疗主治便秘、多梦、心悸、动脉硬化、调整酸体质、高血压、小便不通畅、肿瘤等西红柿:中医认为西红柿具有凉血养肝、清热解毒、降低血压的功效;营养学研究表明:西红柿内含有丰富的维生素C、胡萝卜素、番茄红素等能够大幅减少罹患摄护腺癌等癌症的机率。小麦胚芽:富含维他命E、B、蛋白质、矿物质,新鲜椰子油,还有亚麻酸、亚油酸等多种不饱和脂肪酸,被称为皮肤的维他命。具有消除黑斑、雀斑、皱纹、疤痕和软化血管的食疗功能。编辑本段营养素之隐性饥饿隐性饥饿是由营养不平衡或者缺乏某种维生素及人体必需的矿物质所导致,而其他成分过度摄入,机体产生隐蔽性需求营养的饥饿症状。营养元素让人体能够正常生长,并确保人体能够完成重要的生理功能。一旦出现不均衡,人体表现出部分成分过剩,部分缺乏,却体现出饥饿症状的营养问题。隐性饥饿需要全民重视蛋白质中文名称:
蛋白质英文名称:
protein定义1:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。泛指某一类蛋白质,与前面的限定词组成复合词时,一律用“蛋白质”,如血浆蛋白质、纤维状蛋白质、酶蛋白质等,此时“质”字不得省略。凡指具体蛋白质时,“质”字可省略,如血红蛋白、肌球蛋白等。定义2:不同氨基酸以肽键相连所组成的具有一定空间结构的生物大分子物质。蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16.3%,即一个60kg重的成年人其体内约有蛋白质9.8kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。编辑本段蛋白质整体的结构蛋白质是以氨基酸为基本单位构成的生物大分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。用约20种氨基酸作原料,在细胞质中的核糖体上,将氨基酸分子互相连接成肽链。一个氨基酸分子的氨基,脱去一分子水而连接起来,这种结合方式叫做脱水缩合。通过缩合反应,在羧基和氨基之间形成的连接两个氨基酸分子的那个键叫做肽键。由肽键连接形成的化合物称为肽。编辑本段蛋白质的组成蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P、S、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn、I(碘)、Mo(钼)等这些元素在蛋白质中的组成百分比约为:碳 50% 氢7% 氧23% 氮16% 硫0~3% 其他 微量编辑本段代谢吸收蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。编辑本段生理功能蛋白质的三大基础生理功能分别是:构成和修复组织、调解生理功能和供给能量。蛋白质是构成机体组织、器官的重要成分,人体各组织、器官无一不含蛋白质。同时人体内各种组织细胞的蛋白质始终在不断更新,只有摄入足够的蛋白质方能维持组织的更新,身体受伤后也需要蛋白质作为修复材料。另外蛋白质在体内是构成多种重要生理活性物质的成分,参与调节生理功能。最后供给人体能量是蛋白质的次要功能。编辑本段生理需要2000年,中国营养学会重新修订了推荐的膳食营养素摄入量,新修订的蛋白质推荐摄入量,成年男、女轻体力活动分别为75g/d和60g/d;中体力活动分别为80g/d和70g/d;重体力活动分别为90g/d和80g/d。
编辑本段过量表现蛋白质,尤其是动物性蛋白摄入过多,对人体同样有害。首先过多的动物蛋白质的摄入,就必然摄入较多的动物脂肪和胆固醇。其次蛋白质过多本身也会产生有害影响。正常情况下,人体不储存蛋白质,所以必须将过多的蛋白质脱氨分解,氮则由尿排出体外,这加重了代谢负担,而且,这一过程需要大量水分,从而加重了肾脏的负荷,若肾功能本来不好,则危害就更大。过多的动物蛋白摄入,也造成含硫氨基酸摄入过多,这样可加速骨骼中钙质的丢失,易产生骨质疏松。编辑本段缺乏症蛋白质缺乏在成人和儿童中都有发生,但处于生长阶段的儿童更为敏感。蛋白质的缺乏常见症状是代谢率下降,对疾病抵抗力减退,易患病,远期效果是器官的损害,常见的是儿童的生长发育迟缓、体质量下降、淡漠、易激怒、贫血以及干瘦病或水肿,并因为易感染而继发疾病。蛋白质的缺乏,往往又与能量的缺乏共同存在即蛋白质—热能营养不良,分为两种,一种指热能摄入基本满足而蛋白质严重不足的营养性疾病,称加西卡病。另一种即为“消瘦”,指蛋白质和热能摄入均严重不足的营养性疾病。
编辑本段蛋白质的性质①具有两性蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。②可发生水解反应蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸1。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂③溶水具有胶体的性质有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。
蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。④加入电解质可产生盐析作用少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析.这样盐析出的蛋白质仍旧可以溶解在水中,而不影响原来蛋白质的性质,因此盐析是个可逆过程.利用这个性质,采用分段盐析方法可以分离提纯蛋白质.⑤蛋白质的变性在热、酸、碱、重金属盐、紫外线等作作用下,蛋白质会发生性质上的改变而凝结起来.这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质.蛋白质的这种变化叫做变性.蛋白质变性后,就失去了原有的可溶性,也就失去了它们生理上的作用.因此蛋白质的变性凝固是个不可逆过程.造成蛋白质变性的原因物理因素包括:加热、加压、搅拌、振荡、紫外线照射、X射线、超声波等:化学因素包括:强酸、强碱、重金属盐、三氯乙酸、乙醇、丙酮等。
⑥颜色反应蛋白质可以跟许多试剂发生颜色反应.例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色.这是由于蛋白质(含苯环结构)与浓硝酸发生了颜色反应的缘故.还可以用双缩脲试剂对其进行检验,该试剂遇蛋白质变紫⑦蛋白质在灼烧分解时,可以产生一种烧焦羽毛的特殊气味.
利用这一性质可以鉴别蛋白质.编辑本段蛋白质的折叠过程对蛋白质折叠机理的研究,对保留蛋白质活性,维持蛋白质稳定性和包涵体蛋白质折叠复性都具有重要的意义。早在上世纪30年代,我国生化界先驱吴宪教授就对蛋白质的变性作用进行了阐释(8),30年后,Anfinsen通过对核糖核酸酶A的经典研究表明去折叠的蛋白质在体外可以自发的进行再折叠,仅仅是序列本身已经包括了蛋白质正确折叠的所有信息(9,10),并提出蛋白质折叠的热力学假说,为此Anfinsen获得1972年诺贝尔化学奖。这一理论有两个关键点:1蛋白质的状态处于去折叠和天然构象的平衡中;2 天然构象的蛋白质处于热力学最低的能量状态。尽管蛋白质的氨基酸序列在蛋白质的正确折叠中起着核心的作用,各种各样的因素,包括信号序列,辅助因子,分子伴侣,环境条件,均会影响蛋白质的折叠,新生蛋白质折叠并组装成有功能的蛋白质,并非都是自发的,在多数情况下是需要其它蛋白质的帮助,已经鉴定了许多参与蛋白质折叠的折叠酶和分子伴侣(3,16,86),蛋白质“自发折叠”的经典概念发生了转变和更新,但这并不与折叠的热力学假说相矛盾,而是在动力学上完善了热力学观点。在蛋白质的折叠过程中,有许多作用力参与,包括一些构象的空间阻碍,范德华力,氢键的相互作用,疏水效应,离子相互作用,多肽和周围溶剂相互作用产生的熵驱动的折叠(12,52),但对于蛋白质获得天然结构这一复杂过程的特异性,我们还知之甚少,许多实验和理论的工作都在加深我们对折叠的认识,但是问题仍然没有解决。在折叠的机制研究上早期的理论认为,折叠是从变性状态通过中间状态到天然状态的一个逐步的过程,并对折叠中间体进行了深入研究,认为折叠是在热力学驱动下按单一的途径进行的。后来的研究表明折叠过程存在实验可测的多种中间体,折叠通过有限的路径进行。新的理论强调在折叠的初始阶段存在多样性,蛋白质通过许多的途径进入折叠漏斗(folding funnel),从而折叠在整体上被描述成一个漏斗样的图像,折叠的动力学过程被认为是部分折叠的蛋白质整体上的进行性装配,并且伴随有自由能和熵的变化,蛋白质最终寻找到自己的正确的折叠结构,这一理论称为能量图景(energy landscape),如图3所示,漏斗下方的凹凸反映蛋白质构象瞬间进入局部自由能最小区域。图 3:能量图景(The energy landscape)的示意图,高度代表能量尺度,宽度代表构象尺度,在漏斗(funnel)的下方存在别的低能量状态,共存的不同能量状态的蛋白质种类也降到最小。这一理论认为结构同源的蛋白质可以通过不同的折叠途径形成相似的天然构象,人酸性成纤维生长因子(hFGF-1)和蝾螈酸性成纤维生长因子(nFGF-1)氨基酸序列具有约80%同源性,并且具有结构同源性(12个β折叠反向平行排列形成β折叠桶),在盐酸胍诱导去折叠的过程中,hFGF-1可以监测到具有熔球体样的折叠中间体,而nFGF-1经由两态(天然状态到变性状态)去折叠,没有检测到中间体的存在,折叠的动力学研究也表明两种蛋白采用不同的折叠机制(38)。对于同一蛋白质,采用的渗透压调节剂(osmolytes)不同,蛋白质折叠的途径也不相同,说明不同的渗透压调节剂对蛋白质的稳定效应不同(11)。这两个例子都说明折叠机制的复杂性,也与上面所介绍的理论相吻合。编辑本段蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是机体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶剂以及一些变性剂的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。蛋白质的主要来源是肉、蛋、奶、和豆类食品,一般而言,来自于动物的蛋白质有较高的品质,含有充足的必需氨基酸。必需氨基酸约有8种,无法由人体自行合成,必须由食物中摄取,若是体内有一种必需氨基酸存量不足,就无法合成充分的蛋白质供给身体各组织使用,其他过剩的蛋白质也会被身体代谢而浪费掉,所以确保足够的必需氨基酸摄取是很重要的。植物性蛋白质通常会有1-2种必需氨基酸含量不足,所以素食者需要摄取多样化的食物,从各种组合中获得足够的必需氨基酸。一块像扑克牌大小的煮熟的肉约含有30-35公克的蛋白质,一大杯牛奶约有8-10公克,半杯的各式豆类约含有6-8公克。所以一天吃一块像扑克牌大小的肉,喝两大杯牛奶,一些豆子,加上少量来自于蔬菜水果和饭,就可得到大约60-70公克的蛋白质,足够一个体重60公斤的长跑选手所需。若是你的需求量比较大,可以多喝一杯牛奶,或是酌量多吃些肉类,就可获得充分的蛋白质
怎样选择蛋白质食物蛋白质食物是人体重要的营养物质,保证优质蛋白质的补给是关系到身体健康的重要问题,怎样选用蛋白质才既经济又能保证营养呢?首先,要保证有足够数量和质量的蛋白质食物.根据营养学家研究,一个成年人每天通过新陈代谢大约要更新300g以上蛋白质,其中3/4来源于机体代谢中产生的氨基酸,这些氨基酸的再利用大大减少了需补给蛋白质的数量.一般地讲,一个成年人每天摄入60g~80g蛋白质,基本上已能满足需要.其次,各种食物合理搭配是一种既经济实惠,又能有效提高蛋白质营养价值的有效方法.每天食用的蛋白质最好有三分之一来自动物蛋白质,三分之二来源于植物蛋白质.我国人民有食用混合食品的习惯,把几种营养价值较低的蛋白质混合食用,其中的氨基酸相互补充,可以显著提高营养价值.例如,谷类蛋白质含赖氨酸较少,而含蛋氨酸较多.豆类蛋白质含赖氨酸较多,而含蛋氨酸较少.这两类蛋白质混合食用时,必需氨基酸相互补充,接近人体需要,营养价值大为提高.第三,每餐食物都要有一定质和量的蛋白质.人体没有为蛋白质设立储存仓库,如果一次食用过量的蛋白质,势必造成浪费.相反如食物中蛋白质不足时,青少年发育不良,成年人会感到乏力,体重下降,抗病力减弱.第四,食用蛋白质要以足够的热量供应为前提.如果热量供应不足,肌体将消耗食物中的蛋白质来作能源.每克蛋白质在体内氧化时提供的热量是18kJ,与葡萄糖相当.用蛋白质作能源是一种浪费,是大材小用.
帮助癌细胞的蛋白质的结构当癌细胞快速增生时,它们好像需要一种名为survivin的蛋白质的帮助。这种蛋白质在癌细胞中含量很丰富,但在正常细胞中却几乎不存在。癌细胞与survivin蛋白的这种依赖性使得survivin自然成为制造新抗癌药物的靶标,但是在怎样对付survivin蛋白这个问题上却仍有一些未解之谜。最近据一些研究人员报道,survivin蛋白出人意料地以成双配对的形式结合在一起——这一发现很有可能为抗癌药物的设计提供了新的锲机。
Survivin蛋白属于一类防止细胞自我破坏的蛋白质。这类蛋白质主要通过抑制凋亡酶的作用来阻碍其把细胞送上自杀的道路。以前一直没有科学家观察到survivin蛋白与凋亡酶之间的相互作用。也有其它迹象表明survivin蛋白扮演着另一个不同的角色——在细胞分裂后帮助把细胞拉开。为了搞清survivin蛋白到底起什么作用,美国加利福尼亚州的结构生物学家Joseph Noel和同事们率先认真观察了它的三维结构。他们将X射线照射在该蛋白质的晶体上,并测量了X射线的偏转角度,这可以让研究人员计算出蛋白质中每个原子所处的位置。他们得到的结果指出,survivin蛋白形成一种结和,这是其它凋亡抑制物不形成的。这几位研究人员在7月份出版的《自然结构生物学》杂志中报告,survivin分子的一部分出人意料地与另一个survivin分子的相应部分连结在一起,形成了一个被称为二聚物的蛋白质对。研究人员推测这些survivin蛋白的二聚物可能在细胞分裂时维持关键的分子结构。如果这种蛋白质必须成双配对后才能发挥作用,那么用一种小分子把它们分开也许能对付癌症。生物化学家Guy Salvesen说,掌握了survivin蛋白的结构“并没有澄清它是怎样防止细胞自杀的疑点”。但是他说,这些蛋白质配对的事实确实让人惊奇,“你几乎很难找到不重要的二聚作用区域”。他也同意两个蛋白质的接触面将是抗癌症药物集中对付的良好靶标。食用量摄入的蛋白质有可能会过量。 保持健康所需的蛋白质含量因人而异。
普通健康成年男性或女性每公斤(2.2 磅)体重大约需要 0.8 克蛋白质。随着年龄的增长,合成新蛋白质的效率会降低,肌肉块(蛋白质组织)也会萎缩,而脂肪含量却保持不变甚至有所增加。 这就是为什么在老年时期肌肉看似会“变成肥肉”。简史 1820年H.布拉孔诺发现甘氨酸和亮氨酸,这是最初被鉴定为蛋白质成分的氨基酸,以后又陆续发现了其他的氨基酸。到19世纪末已经搞清蛋白质主要是由一类相当简单的有机分子——氨基酸所组成。1902年E.菲舍尔和F.霍夫迈斯特各自独立地阐明了在蛋白质分子中将氨基酸连接在一起的化学键是肽键;1907年E.菲舍尔又成功地用化学方法连接了18个氨基酸首次合成了多肽,从而建立了作为蛋白质化学结构基础的多肽理论。对蛋白质精确的三维结构知识主要来自对蛋白质晶体的X射线衍射分析,1960 年J.C.肯德鲁首次应用X射线衍射分析技术测定了肌红蛋白的晶体结构 ,这是第一个被阐明了三维结构的蛋白质。中国科学工作者在1965年用化学合成法全合成了结晶牛胰岛素,首次实现了蛋白质的人工合成;在年期间,先后在2.5埃和1.8埃分辨率水平测定了猪胰岛素的晶体结构,这是中国阐明的第一个蛋白质的三维结构。活性蛋白质分子在受到外界的一些物理和化学因素的影响后,分子的肽链虽不裂解,但其天然的立体结构遭致改变和破坏,从而导致蛋白质生物活性的丧失和其他的物理、化学性质的变化,这一现象称为蛋白质的变性。早在1931年中国生物化学家吴宪就首次提出了正确的变性作用理论。引起蛋白质变性的主要因素有:①温度。②酸碱度。③有机溶剂。④脲和盐酸胍。这是应用最广泛的蛋白质变性试剂。⑤去垢剂和芳香环化合物。
蛋白质的变性常伴随有下列现象:①生物活性的丧失。这是蛋白质变性的最主要特征。②化学性质的改变。③物理性质的改变。在变性因素去除以后,变性的蛋白质分子又可重新回复到变性前的天然的构象,这一现象称为蛋白质的复性。蛋白质的复性有完全复性、基本复性或部分复性。只有少数蛋白质在严重变性以后,能够完全复性。蛋白质变性和复性的研究,对了解体内体外的蛋白质分子的折叠过程十分重要。主要通过蛋白质的变性和复性的研究,肯定了蛋白质折叠的自发性,证实了蛋白质分子的特征三维结构仅仅决定于它的氨基酸序列。活性蛋白质分子在生物体内刚合成时,常常不呈现活性,即不具有这一蛋白质的特定的生物功能。要使蛋白质呈现其生物活性,一个非常普遍的现象是,蛋白质分子的肽链在一些生化过程中必须按特定的方式断裂。蛋白质的激活是生物的一种调控方式,这类现象在各种重要的生命活动中广泛存在。很多蛋白质由亚基组成,这类蛋白质在完成其生物功能时,在效率和反应速度的调节方面,很大程度上依赖于亚基之间的相互关系。亚基参与蛋白质功能的调节是一个相当普遍的现象,特别在调节酶的催化功能方面。有些酶存在和活性部位不重叠的别构部位,别构部位和别构配体相结合后,引起酶分子立体结构的变化,从而导致活性部位立体结构的改变,这种改变可能增进,也可能钝化酶的催化能力。这样的酶称为别构酶。已知的别构酶在结构上都有两个或两个以上的亚基。expression, SAGE等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。3.蛋白质组学研究技术可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/ 4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面:3.2 蛋白质组研究中的样品分离和分析利用蛋白质的等电点和分子量通过双向凝胶电泳的方法将各种蛋白质区分开来是一种很有效的手段。它在蛋白质组分离技术中起到了关键作用。如何提高双向凝胶电泳的分离容量、灵敏度和分辨率以及对蛋白质差异表达的准确检测是目前双向凝胶电泳技术发展的关键问题。国外的主要趋势有第一维电泳采用窄pH梯度胶分离以及开发与双向凝胶电泳相结合的高灵敏度蛋白质染色技术,如新型的荧光染色技术。质谱技术是目前蛋白质组研究中发展最快,也最具活力和潜力的技术。它通过测定蛋白质的质量来判别蛋白质的种类。当前蛋白质组研究的核心技术就是双向凝胶电泳-质谱技术,即通过双向凝胶电泳将蛋白质分离,然后利用质谱对蛋白质逐一进行鉴定。对于蛋白质鉴定而言,高通量、高灵敏度和高精度是三个关键指标。一般的质谱技术难以将三者合一,而最近发展的质谱技术可以同时达到以上三个要求,从而实现对蛋白质准确和大规模的鉴定。蛋白质的含氮量比较恒定,平均约为16%。编辑本段补充蛋白质须知蛋白质的蛋白质食物来源可分为植物性蛋白质和动物性蛋白质两大类。植物蛋白质中,谷类含蛋白质10%左右,蛋白质含量不算高,但由于是人们的主食,所以仍然是膳食蛋白质的主要来源。豆类含有丰富的蛋白质,特别是大豆含蛋白质高达36%~40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。蛋类含蛋白质11%~14%,是优质蛋白质的重要来源。奶类(牛奶)一般含蛋白质3.0%~3.5%,是婴幼儿蛋白质的最佳来源。肉类包括禽、畜和鱼的肌肉。新鲜肌肉含蛋白质15%~22%,肌肉蛋白质营养价值优于植物蛋白质,是人体蛋白质的重要来源。 补充蛋白质须知
如何计算一天的蛋白质需要量蛋白质的需要量,因健康状态、年龄、体重等各种因素也会有所不同。身材越高大或年龄越小的人,需要的蛋白质越多。以下数字是不同年龄的人所需蛋白质的指数:年 龄 1—3 4—6 7—10 11—14 15 —18 19以上指 数 1.80 1.49 1.21 0.99 0.88 0.79其计算方法为:先找出自己的年龄段指数;再用此指数乘以自己体重(公斤);所得的答案就是您一天所需要的蛋白质克数。例如:体重50公斤,年龄33岁,其指数是0.79。0.79×50=39.5克。这就是一天所需要的蛋白质的量。平均一天之中蛋白质的需要量最少约是45克,也就是一餐大约15克。注意,早餐必须摄取充分的蛋白质。编辑本段分娩后如何补充蛋白质对于分娩后蛋白质的摄入要注意三点:2第一,蛋白质的摄入量要足够,因为新妈妈哺乳需要摄入充足的蛋白质;第二,蛋白质应该是优质的,一般来说,鱼虾类蛋白质比肉类要好,肉类白肉比红肉好。尽量不要吃可能有激素人工喂养动物的肉类,而应吃天然的食品;第三,蛋白质摄入要均衡,不要只选择一种食物吃。产后营养方面应该遵循的这样几条原则:每天营养摄入足够热量;荤素搭配好;各类鱼、肉、蛋、禽蛋白质要均衡;为了增加乳汁量,可适量增加汤类(鱼汤、肉汤)的摄入。少数人乳汁量不够,下奶比较慢,为了有助于下奶,可喝一些加有中药成分的汤类。这有助于母亲身体的恢复调理(子宫收缩、恶露排出),下奶通畅,并可补充营养。编辑本段蛋白质抗癌作用蛋白质抗癌作用用蛋白质作能源是一种浪费,是大材小用帮助癌细胞的蛋白质的结构当癌细胞快速增生时,需要一种名为survivin的蛋白质的帮助。这种蛋白质在癌细胞中含量很丰富,但在正常细胞中却几乎不存在。癌细胞与survivin蛋白的这种依赖性使得survivin自然成为制造新抗癌药物的靶标,但是在怎样对付survivin蛋白这个问题上却仍有一些未解之谜。
survivin蛋白出人意料地以成双配对的形式结合在一起——这一发现很有可能为抗癌药物的设计提供了新的锲机。Survivin蛋白属于一类防止细胞自我破坏的蛋白质。这类蛋白质主要通过抑制凋亡酶的作用来阻碍其把细胞送上自杀的道路。以前一直没有科学家观察到survivin蛋白与凋亡酶之间的相互作用。也有其它迹象表明survivin蛋白扮演着另一个不同的角色——在细胞分裂后帮助把细胞拉开。生物化学家GuySalvesen掌握了survivin蛋白的结构“并没有澄清它是怎样防止细胞自杀的疑点”。这些蛋白质配对的事实确实让人惊奇,几乎很难找到不重要的二聚作用区域。两个蛋白质的接触面将是抗癌症药物集中对付的良好靶标。食用量摄入的蛋白质有可能会过量。保持健康所需的蛋白质含量因人而异。普通健康成年男性或女性每公斤(2.2磅)体重大约需要0.8克蛋白质。随着年龄的增长,合成新蛋白质的效率会降低,肌肉块(蛋白质组织)也会萎缩,而脂肪含量却保持不变甚至所增加。这就是为什么在老年时期肌肉看似会“变成肥肉”。婴幼儿、青少年、怀孕期间的妇女、伤员和运动员通常每日可能需要摄入更多蛋白质。编辑本段蛋白质的来源与有效吸收蛋白质主要来源:动物蛋白(如鸡蛋、牛奶和各种肉类)和植物蛋白(豆类和豆制品),因为动物蛋白的生物利用度比植物蛋白要高,所以被认为是优质蛋白质。判断食物蛋白质的质量与标准是蛋白质是否容易消化和必须氨基酸是否齐全。日常生活中的肉|家禽、奶制品等所含的氨基酸齐全。但同时也是高脂肪、高热量、高胆固醇。容易使人发胖,并引发多种疾病,如冠心病、心脏病、中风等。黄豆成为植物肉,蛋白质含量丰富,必须氨基酸也齐全。但由于含有蛋白消化酶、抑制因子等不利于吸收。蛋白质粉主要是大豆分离蛋白,来源于黄豆,并经过先进的工艺除去了不利于消化的物质。与其他物品相比提供了几乎能被人体完全吸收的优质蛋白。比其他如肉类,蛋类的脂肪、热量都要低。既可以充足的提供人体所须蛋白质而且不会因摄取过多的脂肪而发胖。蛋白质的蛋白质食物来源可分为植物性蛋白质和动物性蛋白质两大类。植物蛋白质中,谷类含蛋白质10%左右,蛋白质含量不算高,但由于是人们的主食,所以仍然是膳食蛋白质的主要来源。豆类含有丰富的蛋白质,特别是大豆含蛋白质高达36%~40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。蛋类含蛋白质11%~14%,是优质蛋白质的重要来源。奶类一般含蛋白质3.0%~3.5%,是婴幼儿蛋白质的最佳来源。肉类包括禽、畜和鱼的肌肉。新鲜肌肉含蛋白质15%~22%,肌肉蛋白质营养价值优于植物蛋白质,是人体蛋白质的重要来源。 补充蛋白质须知
如何计算一天的蛋白质需要量蛋白质的需要量,因健康状态、年龄、体重等各种因素也会有所不同。身材越高大或年龄越小的人,需要的蛋白质越多。以下数字是不同年龄的人所需蛋白质的指数:年 龄 1—3 4—6 7—10 11—14 15&18 19以上指 数 1.80 1.49 1.21 0.99 0.88 0.79其计算方法为:先找出自己的年龄段指数;再用此指数乘以自己体重;所得的答案就是您一天所需要的蛋白质克数。例如:体重50公斤,年龄33岁,其指数是0.79。0.79×50=39.5克。这就是一天所需要的蛋白质的量。平均一天之中蛋白质的需要量最少约是45克,也就是一餐大约15克。注意,早餐必须摄取充分的蛋白质。编辑本段蛋白质研究方法蛋白质是被研究得最多的一类生物分子,对它们的研究包括“体内”(in vivo)和“体外”(in vitro)。体外研究多应用于纯化后的蛋白质,将它们置于可控制的环境中,以期获得它们的功能信息;例如,酶动力学相关的研究可以揭示酶催化反应的化学机制和与不同底物分子之间的相对亲和力。而体内研究实验着重于蛋白质在细胞或者整个组织中的活性作用,从而可以了解蛋白质发挥功能的场所和相应的调节机制。3编辑本段网络语言在网络语言中,蛋白质代表着 笨蛋、白痴、神经质的意思慎用 = =
蛋 :笨蛋白 :白痴质 :神经质/弱智“蛋白质”女孩就是单身的白领物质女孩,她们在大都市人数众多,吸引着眼球。有人这样形容“蛋白质”女孩的生活:白日天使,夜晚魔鬼。你能有多少种想象,她们就能给你多少种可能。她们挤公共汽车、不断的读书、努力工作、锻炼身体;她们扇男人耳光子、适当逞强、适度撒骄、不刻薄自己,她们泡网、泡吧、泡书、泡音乐、泡男人??编辑本段蛋白质适应人群4适用于所有需要补充蛋白质的人群。 孕妇和哺乳期妇女、工作压力大的都市白领、经常熬夜工作、年长的父母、生长发育期的少年儿童、手术康复者、高血压糖类 中文名称:
糖类其他名称:
碳水化合物;碳水化合物定义1:具有多羟基醛或多羟基酮的非芳香类分子特征物质的统称。依分子组成的复杂程度,可分为单糖、寡糖、多糖和糖缀合物;也可依据其他原则分类,如根据其功能基团分成醛糖或酮糖。定义2:多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称。直链单糖的醛基或者酮基会不可逆的与另外一个碳原子作用形成半缩醛或半缩酮,得到一个带有氧桥连接双碳原子的杂环。由五个或六个原子组成环的分别称为呋喃糖与吡喃糖,这些环状糖与直链形式的糖存在化学平衡。由直链糖形成环状糖的过程中,含有羰基氧原子的碳原子称为:异头碳。这个碳原子在成环后便成为分子内的手性中心,具有两种可能的构型:若氧原子可在平面的上方或下方,这样得到的一对手性异构体称之为:异头物。若在异头碳上的-OH取代基与环外CH2OH基团成反式构型(即不在环一侧)时,则称为:α异头物;另外一种情况两者在环的同一侧,呈现顺式构型,则称为:β异头物。由于环状糖与直链糖本身会互相转化,因此两种异头物存在着平衡。费歇尔投影式中,α异头物被表达为:异头羟基与CH2OH呈现反式,而β异头物则为顺式。二糖由两个连接成一起的单糖组成的糖类,称为:双糖。它们是最简单的多糖,如:蔗糖和乳糖。双糖是由两个单糖单元通过脱水反应,形成一种称为糖苷键的共价键连接而成。在脱水过程中,一分子单糖脱除氢原子,而另一分子单糖脱除羟基。未经修饰的双糖化学式可表达为:C12H22O11。虽然双糖种类繁多,但大多数并不常见。右侧图片展示的为蔗糖,是存量最为丰富的双糖,它们是植物体内存在最主要的糖类。蔗糖由一个D-葡萄糖分子与一个D-果糖分子所组成,其系统命名为:O-α-D-葡萄吡喃糖基--D-果糖呋喃糖苷,其中蕴含了四种信息:它由两种单糖组成:葡萄糖与果糖。两种单糖的类型:葡萄糖为吡喃糖;果糖为呋喃糖。两种单糖的连接方式:在D-葡萄糖的一号碳(C1)上的氧原子连接D-呋喃糖的二号碳(C2)。后缀-糖苷表明了:两个单糖异头碳参与了糖苷键的形成。 乳糖,是一种由一分子D-半乳糖与一分子D-葡萄糖形成的双糖,广泛的存在于天然产物中,如:哺乳动物的母乳。另外一个常见的双糖为麦芽糖(两个D-葡萄糖通过1,4碳原子连接为α糖)与纤维糖(两个D-葡萄糖通过1,4碳原子连接为β糖)。双糖还可分类为还原性双糖与非还原性双糖,通过两个单糖分子的半缩醛(酮)羟基脱去一分子水而相互连接。这样的双糖,分子中已没有半缩醛(酮)羟基存在,因此其中任何一个单糖部分都不能再由环式转变成醛(酮)式。这种双糖就没有变旋现象和还原性,也不能生成糖脎,因此称为非还原性双糖。
蔗糖、麦芽糖和乳糖他们化学式都是(C12H22O11)多糖淀粉、纤维素和糖原他们化学式是(C6H10O5n复合糖(complex carbohydrate,glycoconjugate)糖类的还原端和蛋白质或脂质结合的产物。在生物中分布广泛,有多种重要功能,细胞的识别、定性以及免疫等无不与之有关。糖类和蛋白质结合有以蛋白质为主的称糖蛋白,如血液中的大部分蛋白质;也有以糖为主的,如蛋白聚糖是动物结缔组织的重要成分。和脂质结合的,如脂多糖存在于细菌的外膜,成分以多糖为主;另外有称为糖脂的,组成以脂质为主,大多和细胞的膜连系在一起。糖脂可由鞘氨醇,也可由甘油等衍生,但在自然界分布最广,迄今研究得最多的是鞘糖脂(见鞘脂)。复合糖的不对称:糖脂和糖蛋白只分布于细胞的外表面。低聚糖和多糖低聚糖和多糖都是由单糖单元通过糖苷键组成的长链分子。两者的区别在于单糖单元在链上的数量:低聚糖通常含有3-10个单糖单元,而多糖则超过10个单糖单元。实际应用中,糖的分类更倾向于个人的判断,如通常上述的双糖可以算为低聚糖,也包括了:三糖-棉子糖和四糖-水苏糖。分类:单糖、二糖、低聚糖、多糖、复合糖五种。糖类化合物的生物学作用主要是:1 作为生物能源2 作为其他物质生物合成的碳源3 作为生物体的结构物质4 糖蛋白、糖脂等具有细胞识别、免疫活性等多种生理活性功能。
单糖-糖类种结构最简单的一类,单糖分子含有许多亲水基团,易溶于水,不溶于乙醚、丙酮等有机溶剂,简单的单糖一般是含有3-7个碳原子的多羟基醛或多羟基酮,其组成元素是C,H,O葡萄糖、果糖、半乳糖等。 葡萄糖是生命活动的主要能源物质,核糖是RNA的组成物质,脱氧核糖是DNA的组成物质。葡萄糖、果糖的分子式都是:C6H12O6。他们是同分异构体。低聚糖(寡糖)-由2-10个单糖分子聚合而成。水解后可生成单糖。
二糖-二糖是由两分子单糖脱水而成的糖苷,苷元是另一分子的单糖。二糖水解后生成两分子的单糖。如乳糖、蔗糖、麦芽糖 。蔗糖和麦芽糖是能水解成单糖供能。它们的分子式都是:C12H22O11。也属于同分异构体。
三糖-水解后生成三分子的单糖。如棉子糖 。淀粉是储蓄物质,纤维素是组成细胞壁,糖元是储能物质。四糖五糖多聚糖-由10个以上单糖分子聚合而成。经水解后可生成多个单糖或低聚糖。根据水解后生成单糖的组成是否相同,可以分为:同聚多糖-同聚多糖由一种单糖组成,水解后生成同种单糖。如阿拉伯胶、糖元、淀粉、纤维素等。 淀粉和纤维素的表达式都是(C6H10O5)n。但他们不是同分异构体,因为他们的n数量不同。其中淀粉n&纤维素n。
杂聚多糖-杂聚多糖由多种单糖组成,水解后生成不同种类的单糖。如粘多糖、半纤维素等。复合糖(complex carbohydrate,glycoconjugate).糖类的还原端和蛋白质或脂质结合的产物。编辑本段相关知识几种糖的相对甜度果糖 175 (最甜的糖)
麦芽糖 32科学食用方法大部分糖,如单糖,二糖,应定量摄取,不宜过量,尤其是糖尿病人,有可能会获得反效果;而纤维素,相对与其他糖类,可以大量食用,其在人体内无法水解,但可以有助消化,预防便秘,痔疮和直肠癌,降低胆固醇,预防和治疗糖尿病等。糖类:淀粉,葡萄糖,蔗糖,麦芽糖等。是人体所需能量的主要来源。当人体糖分不足,才会消耗脂肪编辑本段糖 类 化 学概述糖是自然界中存在数量最多、分布最广且具有重要生物功能的有机化合物。从细菌到高等动物的机体都含有糖类化合物。以植物体中含量最为丰富,约占干重的85%~90%,植物依靠光合作用,将大气中的二氧化碳合成糖。其它生物则以糖类如葡萄糖、淀粉等为营养物质,从食物中吸收转变成体内的糖,通过代谢向机体提供能量;同时糖分子中的碳架以直接或间接的方式转化为构成生物体的蛋白质、核酸、脂类等各种有机物分子。所以糖作为能源物质和细胞结构物质以及在参与细胞的某些特殊的生理功能方面都是不可缺少的生物组成成分。第一节 糖的一般概念一、糖类的概念糖类主要是由碳、氢和氧三种元素组成,过去用通式Cnm表示,并称为碳水化合物。后来发现有些化合物如鼠李糖(C6H12O5)和脱氧核糖(C5H10O4)它们的结构和性质都属于糖,但分子中氢氧原子数之比并不是2∶1;而有些化合物,如乙酸(C2H4O6)、乳酸(C3H6O3)等,它们的分子式虽符合上述通式,但却不具有糖的结构和性质。因此称糖为碳水化合物并不恰当。现将糖类化合物定义为多羟醛或多羟酮及其缩聚物和某些衍生物的总称。二、糖的分类和命名糖类化合物按其组成分为三类:单糖、低聚糖和多糖。(一)单糖不能被水解为更小分子的糖属于单糖。据分子中所含羰基的位置分为醛糖和酮糖。一般以环状半缩醛的结构形式存在。按分子中所含碳原子数分别把三碳糖称为丙醛糖和丙酮糖,四碳糖称为丁醛糖和丁酮糖,相应的醛糖和酮糖是同分异构体。自然界中的单糖以含四个、五个和六个碳原子的最为普遍。(二)低聚糖含有2~10个单糖单位,彼此以糖苷键连接,水解以后产生单糖。低聚糖又叫寡糖。自然界以游离状态存在的低聚糖主要有二糖如麦芽糖、蔗糖和乳糖,三糖如棉籽糖。(三)多糖由许多单糖分子或其衍生物缩合而成的高聚物称为多糖,又称为高聚糖。可分为同多糖和杂多糖两类。由一种单糖缩合形成的多糖称为同多糖,如淀粉、纤维素等。由二种以上单糖或其衍生物缩合形成的多糖称为杂多糖,如透明质酸、硫酸软骨素等;按糖分子中有无支链,分为直链多糖和支链多糖;按照功能的不同,分为结构多糖、贮存多糖、抗原多糖等;按其分布部位又分为胞外多糖、胞内多糖。(四)结合多糖(或复合多糖)糖与其它非糖物质共价结合形成结合多糖(复合多糖)或糖缀合物(glycoconjugates),例如蛋白聚糖、糖脂、糖蛋白等。第二节 单 糖自然界中常见的单糖有葡萄糖、果糖、半乳糖等。糖的名称一般不用有机化学系统命名。除少数简单的羟乙醛、二羟丙酮按基团命名外,许多单糖都有一个俗名,一般与来源有关,例如果糖、赤藓糖、核糖等。一、单糖的结构(一)单糖的立体结构和构型1. 单糖的立体异构体单糖分子是不对称分子,具有旋光性。以甘油醛为例,分子中的2位碳是不对称碳原子,分别与4个互不相同的原子和基团H,CH2OH,OH,CHO连接。这样的结构有两种安排,一种是D—甘油醛,另一种是L—甘油醛。书写D— 型结构时,把羟基放在右边;L— 型的羟基放在左边。 D— 甘油醛的旋光是右旋,L— 甘油醛是左旋。 D— 甘油醛与L— 甘油醛是立体异构体,它们的构型不同。因此D型与L型甘油醛为对映体,具有对映体的结构又称“手性”结构。由于旋光方向与程度是由分子中所有不对称原子上的羟基方向所决定,而构型只和分子中离羰基最远的不对称碳原子的羟基方向有关,因此单糖的构型D与L并不一定与右旋和左旋相对应。单糖的旋光用d或(+)表示右旋,l或(— )表示左旋。从丙糖(甘油醛)起的单糖都有不对称碳原子。含有n个不对称碳原子的化合物,应有2n 个立体异构体。2. 单糖的构型糖类物质的D— 型和L— 型是以甘油醛为标准比较而确定的相对构型。糖的构型是由与羰基相距最远的不对称碳原子上的羟基方向来确定的,如与D— 型甘油醛相同,则为D— 型;如与L— 甘油醛相同,则为L型。醛糖都可由甘油醛逐步增长碳链的方法导出。对于酮糖也是按同样方法确定构型。下面各糖概括出的碳原子的构型是相同的,它们都是D— 型糖。(二)单糖的结构与构象单糖的种类很多,其中葡萄糖(游离的、结合形式的)数量最多,在自然界分布也最广。单糖的结构及性质虽各有异,相同之处也很多。葡萄糖的结构和性质有代表性。现以葡萄糖为例阐述单糖的分子结构。葡萄糖是己糖中最重要的一种,因为最初发现于葡萄,所以称为葡萄糖。其分子式是C6H12O6。天然存在的是D— 葡萄糖。1. 链状结构式实验证明D— 葡萄糖的链状结构是:上述结构式可以简化,用“├”表示碳链及不对称碳原子羟基的位置,“△”表示醛基“—CHO”,“—”表示羟基“—OH”,“○”表示第一醇基,则葡萄糖结构式简化为(a),与葡萄糖同属己醛糖的D甘露糖和D半乳糖的结构式分别简化为(b)、(c)。(a)D— 葡萄糖 (b)D—甘露糖 (c)D—半乳糖2. 环状结构物理和化学的方法证明,单糖不仅以直链结构存在,而且以环状结构存在。由于单糖分子中同时存在羰基和羟基,因而在分子内便能由于生成半缩醛(或半缩酮)而构成环。即碳链上一个羟基中的氧与羰基的碳原子连接成环,羟基中的氢原子加到羰基的氧上。实验证明,在一般情况下,己醛糖都是第五个碳原子上的羟基与羰基形成半缩醛,构成六元环。例如D— 葡萄糖可以形成下面两种环形半缩醛:半缩醛式α— D— 葡萄糖 醛式 D— 葡萄糖 半缩醛式β— D— 葡萄糖37% 0.1% 63%D— 葡萄糖由醛式转变为半缩醛式,C1转变为手性碳原子,并形成一对旋光异构体。一般规定新形成的手性碳原子上的羟基(称半缩醛羟基)与决定单糖构型的碳原子(在己糖为C5)上的羟基在碳链同侧者称为α— 型葡萄糖,写作α— D— 葡萄糖;不在同一侧者称为β— 型葡萄糖,写作 β— D— 葡萄糖。不过这两个异构体并不是对映体,只是在第1碳上的羟基方向不同而已,所以称为异头物。半缩醛羟基较其余羟基活泼,糖的许多重要性质都与它有关。不仅如此,葡萄糖也有构象问题,据X— 射线衍射测定表明:葡萄糖吡喃环中的五碳一氧不是处于同一平面的,通常具有如下构象,其中椅式构象因使分子的扭张强度最低,分子中各原子的静电斥力最小而最为稳定。二、单糖的性质单糖的性质由其化学组成和结构决定。(一)主要物理性质1. 溶解度单糖都是无色结晶,由于分子中有多个羟基,在水中溶解度很大,常能形成过饱和溶液一一糖浆。2. 甜度单糖都有甜味,但甜度各不相同,通常把蔗糖的甜度定为100进行比较糖 蔗糖 果糖 转化糖* 葡萄糖 木糖 麦芽糖 半乳糖 乳糖甜度 100 173 130 74 40 32 32 16*由蔗糖水解生成的葡萄糖与果糖的混合物称为转化糖。3. 旋光性及变旋现象一切糖类物质分子内都有手性碳原子,所以都具有旋光性,属于“旋光活性物质”(或光学活性物质)。旋光活性物质使偏振光振动平面旋转的角度称为“旋光度”。物质旋光度的大小因测定时所用溶液的浓度、盛液管的长度、温度、光波的波长以及溶剂的性质等而改变。但在一定的条件下,不同旋光活性物质的旋光度仍为一常数,通常用比旋光度α表示。比旋光度的定义是:以1 ml中含有1 g溶质的溶液,放在1 dm长的盛液管中测出的旋光度。糖的比旋光度用α D2 0表示。计算公式如下:
式中α:由旋光仪测得的旋光度。C:糖(光学活性的)溶液的浓度,以每毫升溶液中所含溶质的克数表示,溶剂为水。L:盛液管的长度,以分米表示。20:20℃,表示测定比旋光度在20℃进行。D:表示以钠光灯作光源。(二)主要化学性质单糖是多羟醛或多羟酮,所以具有醛基、酮基、醇羟基的性质,能发生醇羟基的成酯、成醚等反应和羰基的氧化、还原和加成等反应,而且具有羟基及羰基相互影响而产生的一些特殊反应。单糖在水溶液中是以链式和环式平衡存在的。在某些反应中,其链式异构体参与反应,而环式异构体就连续不断地转变为链式,最后全部生成链式异构体的衍生物,单糖的主要化学性质如下:1. 由醛基、酮基产生的性质(1)单糖的异构化作用(2)单糖的氧化(还原性)2. 由羟基(醇羟基和半缩醛羟基)产生的性质(1)成酯作用(2)成脎作用(3)成苷作用三、重要的单糖及其衍生物单糖是糖类的最小单位。近半个世纪来,发现的单糖为数不少,现已知的醛糖有600多种,酮糖及其衍生物180种。自然界中的单糖少于其光学异构体的理论数目,常见的醛糖、酮糖、脱氧糖、分支糖、氨基糖也很多,下面列举一些较重要的代表(表3—3)。由于单糖具有多个可反应的基团,因此可形成多种单糖衍生物,大体有以下几类:1. 糖苷类2. 单糖磷酸酯
3. 氨基糖(amino sugar 或glycosamine)
5. 糖醇第三节 寡 糖寡糖是2~10个单糖组成的低聚糖。自然界以游离状态存在的二糖有蔗糖、麦芽糖。三糖有棉籽糖等;到目前为止,已知的寡糖已达500多种。一、二糖的结构自然界中最常见的寡糖是双糖。组成寡糖的单糖可以是相同的,如麦芽糖、纤维二糖。但更多的寡糖可能是不同种的单糖组成。如蔗糖由葡萄糖与果糖组成,乳糖由半乳糖和葡萄糖组成。此外寡糖中也可能包含单糖的衍生物,如透明质酸二糖由β— 葡萄糖醛酸与乙酰氨基葡萄糖组成,软骨二糖由β— 葡萄糖醛酸与半乳糖胺组成。麦芽糖 蔗糖乳糖 纤维二糖现已发现在激素、抗体、维生素、生长素和其它各种重要分子中都有寡糖。寡糖也存在于细胞膜中,寡糖链凸出于细胞膜的表面,使整个细胞表面均覆盖有寡糖,可能是细胞间识别的基础。二、常见的二糖1. 乳糖2. 麦芽糖3. 蔗糖三、糖蛋白的寡糖基糖类与蛋白质或多肽结合,形成有两种不同类型的糖苷键。一种是利用肽链上天冬酰胺的氨基与糖基上的半缩醛羟基形成N— 糖苷键,另一种是利用肽链上苏氨酸或丝氨酸(或羟脯氨酸、羟赖氨酸)的羟基与糖基上半缩醛羟基形成O— 糖苷键。N—乙酰氨基葡萄糖— 天冬酰胺 N—乙酰氨基葡萄糖— 丝氨酸(苏氨酸)N— 糖苷键 O— 糖苷键第四节 多 糖多糖是由十个以上到上万个单糖分子或单糖衍生物分子通过糖苷键连接而成的线性或带有支链的高分子聚合物。自然界中发现的糖类,绝大多数是以高分子量的多糖出现。用酸或特异的酶完全水解这些多糖后,产生单糖和(或)简单的单糖衍生物。 D— 葡萄糖是多糖中最普通的单糖单位,但由D— 甘露糖、D— 果糖、D— 和L— 半乳糖、D—木糖和D— 阿拉伯糖等组成的多糖也常见。天然多糖水解物中很常见的单糖衍生物有:D— 氨基葡萄糖、D— 氨基半乳糖、D— 葡萄糖醛酸、N— 乙酰胞壁酸和N— 乙酰神经氨酸等等。多糖没有还原性和变旋现象,也没有甜味。多糖的分子量都很大,在水中不能成真溶液,有些多糖能与水形成胶体溶液。许多多糖不溶于水。多糖在自然界中分布很广。植物的骨架纤维素、动植物贮藏的养分淀粉、糖原、人软骨中的软骨素、昆虫的甲壳、植物的粘液、树胶、细菌的荚膜等许多物质,都是由多糖构成的。一、贮存多糖这些多糖中,淀粉是植物中最丰富的,糖原则是动物中最丰富的。它们通常以大颗粒状蕴藏于细胞的胞质中。在葡萄糖过剩时,单个的葡萄糖就通过酶促作用联结到淀粉或糖原的末端,而代谢需要时,它们又通过酶促作用释放出来作燃料用。(一)淀粉淀粉是植物贮存的养料,主要存在于种子中(谷物、豆类等、块茎(如马铃薯)和块根(如薯类)中。天然淀粉显颗粒状,外层为支链,约占75%~85%,内层为直链部分,约占15%~25%,这两部分的结构和性质有一定差异,直链淀粉的分子量比支链淀粉的分子量小(分子量大小与淀粉的来源及分离提纯的方法有关),它们在淀粉粒中的比例随植物品种而异。有的淀粉粒(如糯米)全部为支链淀粉,而豆类的淀粉则全是直链淀粉。1. 直链淀粉的结构和性质2. 支链淀粉的结构和性质(二)糖原的结构和性质糖原是动物细胞内贮存的多糖,因其结构和作用与植物的淀粉类似,所以又称为动物淀粉。存在于肝脏的称为肝糖原,存在于肌肉的称为肌糖原。糖原也像支链淀粉一样,是D— 葡萄糖连结成的多糖,然而它是分支程度和紧密度比支链淀粉更高的分子。分支点之间的间隔为3~4个葡萄糖单位,每个分支平均长度12~18个葡萄糖单位。最大的糖原分子由几十万个葡萄糖单位组成,但仍能溶于水中。近年来研究证明,糖原中含有少量蛋白质(1%),可能蛋白质是中心物质,在其蛋白质链上接上糖原的多糖链。糖原可用热KOH溶液消化动物组织后,将其分离出来。在KOH溶液中,其非还原性的α— 1,4键和α— 1,6键都是稳定的。糖原容易被α— 和β— 淀粉酶水解,分别形成葡萄糖和麦芽糖。在β— 淀粉酶作用下,也产生极限糊精,糖原与碘产生红紫色反应。二、结构多糖许多多糖在细胞壁和外膜、细胞间隙和结缔组织的首要作用是作为结构成分,以赋予植物或动物组织以形态、弹性或刚性,并赋予单细胞生物以保护和支持。还发现多糖是许多无脊椎动物外骨骼的重要有机成分。例如壳多糖就是昆虫和甲壳类外骨骼的重要有机成分。(一)植物的细胞壁由于植物细胞要能承受细胞内外液之间的巨大渗透压差,它们必须有硬的细胞壁以保持不致膨胀。一些较大的植物如树,其细胞壁不仅要有助于茎、叶和根组织的物理强度或硬度,而且还必须支持巨大的重量。1. 纤维素2. 半纤维素(二)细菌细胞壁细菌细胞壁是硬的、多孔的、盒子样的结构,它对细胞起物理保护作用。由于细菌有高的内部渗透压,而它们又经常暴露于一完全可变的和有时是低渗的外环境中,故它们必须有坚硬的细胞壁以防止细胞膜的膨胀和破裂。因为细菌细胞壁含有特殊抗原,可用于诊断传染病,并且也因为用青毒素和其它抗菌素能抑制细胞壁的生物合成,故对它们的结构和生物合成已有深入的研究。三、糖胺聚糖糖胺聚糖又叫酸性粘多糖,是一组相关的杂多糖,通常含有两种类型交替出现的单糖单位,分子中含有氨基己糖或乙酰氨基糖,因其中至少含一个酸性基,或为羧基或为硫酸根(表3— 5),所以有较强酸性,是一种酸性杂多糖。当它们与特殊蛋白质络合而存时,则称为粘液素或粘蛋白;在这类蛋白质中,多糖构成其重量的最大部分。粘蛋白是胶状的、粘稠的物质,有的起润滑作用,有的则起有弹性的细胞内粘合剂作用。表3— 5 几种糖胺聚糖的组分糖胺聚糖 己糖胺 糖醛酸 SO42 - 存 在透明质酸 N—乙酰葡萄糖胺 D— 葡萄糖醛酸 无 结缔组织、角膜、皮肤肝素 葡萄糖胺 D— 葡萄糖醛酸 有 皮肤、肺、肝硫酸软膏素A N— 乙酰半乳糖胺 D— 葡萄糖醛酸 无 骨、软骨、角膜、皮肤最丰富的糖胺聚糖是透明质酸,存在于细胞外膜和脊椎动物结缔组织的细胞内基质中;也出现于关节滑液和眼的玻璃体液中。透明质酸的重复单位是由一个D— 葡萄糖醛酸和N— 乙酰— D— 氨基葡萄糖通过β— 1,4— 糖苷键连接成的双糖(图)。另一种糖胺聚糖是软骨素,在结构上软骨素与透明质酸几乎相同,惟一不同的是它含有N— 乙酰— D— 氨基半乳糖而不是N— 乙酰— D— 氨基葡萄糖。软骨素本身仅是细胞外物质的一个不重要的成分。但它们的衍生物4— 硫酸软骨素(软骨素A)和6— 硫酸软骨素(软骨素C)则是细胞外膜、软骨、骨、角膜和脊椎动物结缔组织的重要构成成分。四、糖复合物糖复合物是指糖类的还原端和其它非糖组分以共价键结合的产物,主要有糖蛋白和糖脂。按多糖和蛋白质的相对比例,糖与蛋白质的复合物又可分为糖蛋白和蛋白多糖两类。糖蛋白质是以蛋白质为主,糖只是作为蛋白质的辅基,如卵清蛋白含糖基1%。而蛋白多糖是以多糖为主,蛋白所占的比例少,如粘蛋白含糖基高达80%牛bb文章网欢迎您转载分享:http://www.niubb.net/a//935369.html专题导读:>>>
"什么是无机盐"相关文章
无相关信息

我要回帖

更多关于 铜绿生成的化学方程式 的文章

 

随机推荐