a²+a+6=0 a分之一大于1怎么解解一元二次方程的根,除了十字相乘法外

扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
关于x的一元二次方程﹙a-6﹚x²-8x+9=0有实根,求a的最大值,当a取最大值时,求该方程的根;当a取最大值时,求2x²-﹙32x-7﹚/x²-8x+11的值
二似柒TA628
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
Δ=64-36(a-6)=-36a+280≥0得:a≤70/9,a≠6.∴最大整数a=7,方程为X²-8X+9=0,∴X²-8X+11=2,X²-8X=-9原式=2X²-(32X-7)/2=2X²-16X+7/2=2(X²-8X)+7/2=-18+7/2=-29/2.
为您推荐:
其他类似问题
由题意得;△=8^2-4*9(a-6)≥0
64-36a+216≥0
a≤70/9∵这是一个一元二次方程,∴a-6≠0,a≠6∴a≤70/9且a≠6∴a的最大值为
扫描下载二维码扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
一元二次方程的详细解法有哪些?
砍出个未来
扫二维码下载作业帮
2亿+学生的选择
一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视.
一元二次方程的一般形式为:ax2(2为次数,即X的平方)+bx+c=d, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程.
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解.
(1)(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴原方程的解为x1=,x2=
(2) 9x2-24x+16=11
∴(3x-4)2=11
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根.
例3.用公式法解方程 2x2-8x=-5
将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2*a)
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根.这种解一元二次方程的方法叫做因式分解法.
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解.
(2)2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解.
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.
(3)6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解.
(4)x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解.
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般
形式,同时应使二次项系数化为正数.
直接开平方法是最基本的方法.
公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式
法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方
法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).
例5.用适当的方法解下列方程.(选学)
(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算.观察后发现,方程左边可用平方差
公式分解因式,化成两个一次因式的乘积.
(2)可用十字相乘法将方程左边因式分解.
(3)化成一般形式后利用公式法解.
(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解.
(1)4(x+2)2-9(x-3)2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2) x2+(2- )x+ -3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)x2-2 x=-
x2-2 x+ =0 (先化成一般形式)
△=(-2 )2-4 ×=12-8=4>0
(4)4x2-4mx-10x+m2+5m+6=0
4x2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根. (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我
们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方
[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解.
例7.用配方法解关于x的一元二次方程x2+px+q=0
x2+px+q=0可变形为
x2+px=-q (常数项移到方程右边)
x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)
∴x1= ,x2=
为您推荐:
其他类似问题
一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 第二种方法是配方...
是一切解法的基础
配方法 推出
你是初三么?我们老师讲有这几种:1.因式相乘2.公式法3.配方法还有延伸出的:分组分解……
扫描下载二维码如果α是一元二次方程x^2-3x+m=0的一个根,-α是一元二次方程x^2+3x-m=0的一个根,那么α的值是——
如果α是一元二次方程x^2-3x+m=0的一个根,-α是一元二次方程x^2+3x-m=0的一个根,那么α的值是——判断关于方程x^2+2ax+a+1=0的根的情况
因为α是一元二次方程x^2-3x+m=0的一个根,有α²-3α+m=0 (1)又因为-α是一元二次方程x^2+3x-m=0的一个根,有(-α)²+3(-α)-m=0,即α²-3α-m=0 (2)(1)-(2)得 2m=0 得 m=0那么两个方程分别为x²-3x=0 和x²+3x=0.显然α=3或者0.
与《如果α是一元二次方程x^2-3x+m=0的一个根,-α是一元二次方程x^2+3x-m=0的一个根,那么α的值是——》相关的作业问题
一、(x-8)^2=(x+3)^2(x-8)^2-(x+3)^2=0(x-8+x+3)(x-8-x-3)=0(2x-5)(-11)=02x-5=0x=2.5二、(x-5)^2=(3x+1)^2(x-5)^2-(3x+1)^2=0(x-5+3x+1)(x-5-3x-1)=0(4x-4)(-2x-6)=0x=4 x=-3三
2乘以x的平方-3x-1=0的根是x=(3±√17)/4所以原式子分解为=2【x-(3+√17)/4】【x-(3-√17)/4】 原理是ax²+bx+c=0的两个根是x1、x2则ax²+bx+c=a(x-x1)(x-x2)
根据题意,有:mn=-5m+n=3则代数式mn+(m-n)(m+n-3)=-5+(m-n)(3-3)=-5
3x²-x=13x²-x-1=0△=1+12=13>0由求根公式,x=(1±√13)/6即:x1=(1-√13)/6,x2=(1+√13)/6
x²-3x+m=0 ∝²-3∝+m=0x²+3x-m=0 ∝²-3∝-m=0m=0∝=0或者3,因为0不分正负∝=3
(2x-1)^2=(3-x)^2两边完全平方展开,移项合并可得:4X^2-4X+1=X^2-6X+93X^2+2X-8=0 (3X-4)(X+2)=0本题 还可移项后用平方差公式:(2x-1)^2-(3-x)^2=0[(2X-1)+(3-X)][(2X-1)-(3-X)]=0(X+2)(3X-4)=0 再问: 我是不太
①给的数都不对啊,想让方程的两根的倒数为根的一元二次方程,把系数颠倒就可以了ax^2+bx+c=0的两根,与cx^2+bx+a=0的两根互为倒数.②Δ=(2m-1)^2-4m^2=-4m+1≥0,解的m≤1/4,m为非负整数,所以m等于0
设a,b是方程2x²-3x+1=0的两个根由韦达定理得a+b=3/2,ab=1/2则所求方程的两根是-1/a,-1/b(-1/a)+(-1/b)=-(a+b)/(ab)=-(3/2)/(1/2)=-3(-1/a)(-1/b)=1/(ab)=1/(1/2)=2故所求方程可以是x²+3x+2=0
x最高是2次所以是关于x的一元二次方程(3x+1)平方=-2平方不会是负数所以没有实数解
解X,X取负值,代入后面的就OK了
3X^2-X-2=(3x+2)(x-1)=0所以x=-2/3或者x=1 这个因式分解可以用十字相乘法
当a≠(3)时,方程ax²+bx=3x²+1 一定是关于x的一元二次方程.
& 再问: 感谢
设原方程根为a、b 根据与系数的关系得 a+b=3,ab=-1 所以a^2·b^2=1 a^2+b^2=(a+b)^2-2ab=11 所以以a^2、b^2为根的一元二次方程为x^2-11x+1=0求采纳
原式=9x^2+6x+1-36=4x^2-25整理得一般形式:5x^2+6x-10=0二次项系数为5,一次项系数为6,常数项为-10
4x的平方+根号3x=14x的平方+根号3x-1=0若两个根分别是X1,X2,则x1+x2=-√3/4,x1*x2=-1/4X1分之X2+X2分之X1=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2]/(x1x2)=[(-√3/4)²-2*(-1/4)]/(-1
1、根据根与系数关系得x1+x2=-1x1x2=-1/3∴x1²+x2²=(x1+x2)²-2x1x2=1+2/3=5/31/x1+1/x2=(x1+x2)/x1x2=3x1³+x2³=(x1+x2)(x1²-x1x2+x2²)=(x1+x2)[(x
按你第一种理解,(3)2a+b=2;a-b=1这个式子要改为(3)2a+b=2;a-b=0
再问: 某水果批发站购进了两批苹果,共36t,第一批苹果每吨盈利1000元,第二批苹果每吨盈利1200元,若两批苹果重量的乘积为323,那么这两批苹果最多可使批发站盈利多少元 求回答 再答: 设第一批苹果重x吨,第二批苹果(36-x)吨 x(36-x)=323 (x-17)(x-19)=0解得x1=17 x2=19 显
第一题:方程∵(m^2+4)x^m+3x+1=0是关于x的一元二次方程,∴x的次数m=2 ∴x的系数m²+4=2²+4=8 第二题方程x²-(2a+1)x-a-3/4=0中△=[-(2a+1)]²-4·1·(-a-3/4)=4a²+4a+1+4a+3=4a²+一元二次方程
一元二次方程
09-08-21 &匿名提问
1.已知a是关于x的一元二次方程x2-3x+m=0的一个根,-a是关于x的一元二次方程x2+3x-m=0.试求a的值. 答:把a代入方程x2-3x+m=0得:a2-3a+m=0; 把-a代入方程x2+3x-m=0得:(-a)2+3*(-a)-m=0==&a2-3a-m=0 所以m=0,所以a2-3a=0,所以a=3。a=0(不合题意,舍去),所以 a=3 2.如果我们知道方程(k2+2)x2+(5-k)x=1-3kx2 是关于x的一元二次方程.那么你能求得k的值吗? 答 :方程(k2+2)x2+(5-k)x=1-3kx2 是关于x的一元二次方程。 所以k2+2+3k≠0, 所以k≠-1,k≠-2 3(x2+3x+4)(x2+3x+5)=6.通过仔细观察.巧妙解题(不准展开解题.) 答:通过观察,x2+3x+4比x2+3x+5始终小“1”,所以x2+3x+4=2,x2+3x+5=3,或者x2+3x+4=-3,x2+3x+5=-2(这两个方程无实根)。 所以,x=-1,或x=-2, 4已知m.n是关于x的方程x2-(p-2)x+1=0的两个实数根,求代数式(m2+mp+1)(n2+np+1)的值答:m.n是关于x的方程x2-(p-2)x+1=0的两个实数根, 所以有:m2-(p-2)m+1=0和n2-(p-2)n+1=0 所以:m2-mp+2m+1=0和n2-np+2n+1=0 m2+mp+1=2mp-2m和n2+np+1=2np-2n 所以:(m2+mp+1)(n2+np+1)=(2mp-2m)*(2np-2n)=4mn(p-1)^2 因为mn=1,所以:(m2+mp+1)(n2+np+1)=4(p-1)^2
请登录后再发表评论!
在一个等式中,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。  一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. 图片中一次项系数为b(4)将方程化为一般形式:ax²+bx+c=0时,应满足(a≠0)补充说明:  1该部分的只是为初等数学知识,一般在初三学习。  2该部分是高考的热点。
请登录后再发表评论!
一元二次方程目录[隐藏]数学术语定义补充说明:一般形式一般解法判别方法列一元二次方程解题的步骤经典例题精讲韦达定理计算机解一元二次方程VB实现方法数学术语定义补充说明:一般形式一般解法判别方法列一元二次方程解题的步骤经典例题精讲韦达定理计算机解一元二次方程 VB实现方法 [编辑本段]数学术语  [编辑本段]定义  在一个等式中,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。  一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. 图片中一次项系数为b(4)将方程化为一般形式:ax²+bx+c=0时,应满足(a≠0)[编辑本段]补充说明:  1该部分的只是为初等数学知识,一般在初三学习。  2该部分是高考的热点。[编辑本段]一般形式  ax^2+bx+c=0(a、b、c是实数a≠0)  x^2+2x+1=0[编辑本段]一般解法  1..配方法(可解全部一元二次方程)  2.公式法(可解全部一元二次方程)  3.因式分解法(可解部分一元二次方程)  4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)   5.十字相乘法(可解部分一元二次方程)(要是一般形式)  一、知识要点:   一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基   础,应引起同学们的重视。   一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2   的整式方程。   解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解   法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。   二、方法、例题精讲:   1、直接开平方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的   方程,其解为x=m±√n  例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11&0,所以   此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7  ∴3x+1=±√7(注意不要丢解)   ∴x= ...  ∴原方程的解为x1=...,x2= ...  (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11  ∴x= ...  ∴原方程的解为x1=...,x2= ...  2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将固定数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+x=-   方程两边分别加上一次项系数的一半的平方:x^2+x+( )2=- +( )2   方程左边成为一个完全平方式:(x+ )2=   当b2-4ac≥0时,x+ =±   ∴x=...(这就是求根公式)   例2.用配方法解方程 3x^2-4x-2=0   解:将常数项移到方程右边 3x^2-4x=2   将二次项系数化为1:x^2-x=   方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2   配方:(x-)^2=   直接开平方得:x-=±   ∴x=   ∴原方程的解为x1=,x2= .   3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。   当b^2-4ac&0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)  当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)  当b^2-4ac&0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个共轭的虚数根)(初中理解为无实数根)  例3.用公式法解方程 2x^2-8x=-5   解:将方程化为一般形式:2x^2-8x+5=0   ∴a=2, b=-8, c=5   b^2-4ac=(-8)2-4×2×5=64-40=24&0   ∴x= = =   ∴原方程的解为x1=,x2= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让   两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个   根。这种解一元二次方程的方法叫做因式分解法。   例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0   (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)   (1)解:(x+3)(x-6)=-8 化简整理得   x^2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x^2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=, x2=- 是原方程的解。   (4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。   小结:   一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般   形式,同时应使二次项系数化为正数。   直接开平方法是最基本的方法。   公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式   法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程   是否有解。   配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法   解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方   法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。   例5.用适当的方法解下列方程。(选学)   (1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0   (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0   分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差   公式分解因式,化成两个一次因式的乘积。   (2)可用十字相乘法将方程左边因式分解。   (3)化成一般形式后利用公式法解。   (4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。   (1)解:4(x+2)^2-9(x-3)^2=0   [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0   (5x-5)(-x+13)=0   5x-5=0或-x+13=0   ∴x1=1,x2=13   (2)解: x^2+2x-3=0   [x-(-3)](x-1)=0   x-(-3)=0或x-1=0   ∴x1=-3,x2=1   (3)解:x^2-2 x=-   x^2-2 x+ =0 (先化成一般形式)   △=(-2 )^2-4 ×=12-8=4&0   ∴x=   ∴x1=,x2=   (4)解:4x^2-4mx-10x+m^2+5m+6=0   4x^2-2(2m+5)x+(m+2)(m+3)=0   [2x-(m+2)][2x-(m+3)]=0   2x-(m+2)=0或2x-(m+3)=0   ∴x1= ,x2=   例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根。 (选学)   分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我   们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方   法)   解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0   即 (5x-5)(2x-3)=0   ∴5(x-1)(2x-3)=0   (x-1)(2x-3)=0   ∴x-1=0或2x-3=0   ∴x1=1,x2=是原方程的解。   例7.用配方法解关于x的一元二次方程x^2+px+q=0   解:x^2+px+q=0可变形为   x^2+px=-q (常数项移到方程右边)   x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)   (x+)2= (配方)   当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)   ∴x=- ±=   ∴x1= ,x2=   当p^2-4q&0时,&0此时原方程无实根。   说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母   取值的要求,必要时进行分类讨论。   练习:   (一)用适当的方法解下列方程:   1. 6x^2-x-2=0 2. (x+5)(x-5)=3   3. x^2-x=0 4. x^2-4x+4=0   5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0   (二)解下列关于x的方程   1.x^2-ax+-b2=0 2. x^2-( + )ax+ a2=0   练习参考答案:   (一)1.x1=-1/2 ,x2=2/3 2.x1=2,x2=-2   3.x1=0,x2= 4.x1=x2=2 5.x1=x2=   6.解:(把2x+3看作一个整体,将方程左边分解因式)   [(2x+3)+6][(2x+3)-1]=0   即 (2x+9)(2x+2)=0   ∴2x+9=0或2x+2=0   ∴x1=-,x2=-1是原方程的解。   (二)1.解:x^2-ax+( +b)( -b)=0 2、解:x^2-(+ )ax+ a· a=0   [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0   ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0   ∴x1= +b,x2= -b是 ∴x1= a,x2=a是   原方程的解。 原方程的解。   测试(有答案在下面)   选择题   1.方程x(x-5)=5(x-5)的根是( )   A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5   2.多项式a2+4a-10的值等于11,则a的值为( )。   A、3或7 B、-3或7 C、3或-7 D、-3或-7   3.若一元二次方程ax^2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个   根是( )。   A、0 B、1 C、-1 D、±1   4. 一元二次方程ax^2+bx+c=0有一个根是零的条件为( )。   A、b≠0且c=0 B、b=0且c≠0   C、b=0且c=0 D、c=0   5. 方程x^2-3x=10的两个根是( )。   A、-2,5 B、2,-5 C、2,5 D、-2,-5   6. 方程x^2-3x+3=0的解是( )。   A、 B、 C、 D、无实根   7. 方程2x^2-0.15=0的解是( )。   A、x= B、x=-   C、x1=0.27, x2=-0.27 D、x1=, x2=-   8. 方程x^2-x-4=0左边配成一个完全平方式后,所得的方程是( )。   A、(x-)2= B、(x- )2=-   C、(x- )2= D、以上答案都不对   9. 已知一元二次方程x^2-2x-m=0,用配方法解该方程配方后的方程是( )。   A、(x-1)^2=m2+1 B、(x-1)^2=m-1 C、(x-1)^2=1-m D、(x-1)^2=m+1   答案与解析   答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D   解析:   1.分析:移项得:(x-5)^2=0,则x1=x2=5,   注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。   2.分析:依题意得:a^2+4a-10=11, 解得 a=3或a=-7.   3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax^2+bx+c=a+b+c,意味着当x=1   时,方程成立,则必有根为x=1。   4.分析:一元二次方程 ax^2+bx+c=0若有一个根为零,   则ax^2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.   另外,还可以将x=0代入,得c=0,更简单!   5.分析:原方程变为 x^2-3x-10=0,   则(x-5)(x+2)=0   x-5=0 或x+2=0   x1=5, x2=-2.   6.分析:Δ=9-4×3=-3&0,则原方程无实根。   7.分析:2x2=0.15   x2=   x=±   注意根式的化简,并注意直接开平方时,不要丢根。   8.分析:两边乘以3得:x^2-3x-12=0,然后按照一次项系数配方,x^2-3x+(-)2=12+(- )^2,   整理为:(x-)2=   方程可以利用等式性质变形,并且 x^2-bx配方时,配方项为一次项系数-b的一半的平方。   9.分析:x^2-2x=m, 则 x^2-2x+1=m+1   则(x-1)^2=m+1.   中考解析   考题评析   1.(甘肃省)方程的根是( )   (A) (B) (C) 或 (D) 或   评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确   选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元   二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为   C。   另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。   2.(吉林省)一元二次方程的根是__________。   评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。   3.(辽宁省)方程的根为( )   (A)0 (B)–1 (C)0,–1 (D)0,1   评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、   B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。   4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。   评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。   5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )   (A)x=3+2 (B)x=3-2   (C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2   评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方   根,即可选出答案。   课外拓展   一元二次方程   一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二   次的整式方程。 一般形式为   ax^2+bx+c=0, (a≠0)   在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它   的倒数之和等于 一个已给数,即求出这样的x与,使   x=1, x+ =b,   x^2-bx+1=0,   他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次   方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。   埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。   在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。   希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中   之一。   公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公   式。   在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种   不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成   不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次   给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的   数学家们为了解三次方程而开始应用复数根。   韦达()除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。   我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学   家还在方程的研究中应用了内插法。[编辑本段]判别方法  一元二次方程的判断式:  b^2-4ac&0 方程有两个不相等的实数根.   b^2-4ac=0 方程有两个相等的实数根.   b^2-4ac&0 方程有两个共轭的虚数根(初中可理解为无实数根).   上述由左边可推出右边,反过来也可由右边推出左边.[编辑本段]列一元二次方程解题的步骤  (1)分析题意,找到题中未知数和题给条件的相等关系;   (2)设未知数,并用所设的未知数的代数式表示其余的未知数;   (3)找出相等关系,并用它列出方程;   (4)解方程求出题中未知数的值;   (5)检验所求的答案是否符合题意,并做答.[编辑本段]经典例题精讲  1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.   2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.   3.一元二次方程 (a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.   4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.[编辑本段]韦达定理  韦达(Vieta's ,Francois,seigneurdeLa Bigotiere)1540年出生于法国普瓦捷,日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。  他1540年生于法国的普瓦图。日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。  韦达定理实质上就是一元二次方程中的根与系数关系  韦达定理(Viete's Theorem)的内容  一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中   设两个根为X1和X2   则X1+X2= -b/a   X1*X2=c/a  韦达定理的推广  韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0  它的根记作X1,X2…,Xn  我们有  ∑Xi=(-1)^1*A(n-1)/A(n)  ∑XiXj=(-1)^2*A(n-2)/A(n)  …  ΠXi=(-1)^n*A(0)/A(n)  其中∑是求和,Π是求积。  如果一元二次方程   在复数集中的根是,那么   法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。   由代数基本定理可推得:任何一元 n 次方程   在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:   其中是该方程的个根。两端比较系数即得韦达定理。   韦达定理在方程论中有着广泛的应用。  韦达定理的证明  设x1,x2是一元二次方程ax^2+bx+c=0的两个解。  有:a(x-x1)(x-x2)=0   所以 ax^2-a(x1+x2)x+ax1x2=0  通过对比系数可得:  -a(x1+x2)=b ax1x2=c  所以 x1+x2=-b/a x1x2=c/a   韦达定理推广的证明  设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。  则有:An(x-x1)(x-x2)……(x-xn)=0  所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)  通过系数对比可得:  A(n-1)=-An(∑xi)  A(n-2)=An(∑xixj)  …  A0==(-1)^n*An*ΠXi  所以:∑Xi=(-1)^1*A(n-1)/A(n)  ∑XiXj=(-1)^2*A(n-2)/A(n)  …  ΠXi=(-1)^n*A(0)/A(n)  其中∑是求和,Π是求积。[编辑本段]计算机解一元二次方程  VB实现方法  '该代码仅可实现一般形式的求值,并以对话框形式显示。  dim a,b,c,i  '在这里添加a、b、c的赋值过程  '例如:a=text1.text  'b=text2.text  'c=text3.text  if a*2 && 0 then  i=((0-b)+Sqr(b^2-4*a*c))/2  msgbox i  i=((0-b)-Sqr(b^2-4*a*c))/2  msgbox i  else  msgbox(&2a为零&)  end if
请登录后再发表评论!
一元二次方程  解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方   法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。   例5.用适当的方法解下列方程。(选学)   (1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0   (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0   分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差   公式分解因式,化成两个一次因式的乘积。   (2)可用十字相乘法将方程左边因式分解。   (3)化成一般形式后利用公式法解。   (4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。   (1)解:4(x+2)^2-9(x-3)^2=0   [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0   (5x-5)(-x+13)=0   5x-5=0或-x+13=0   ∴x1=1,x2=13   (2)解: x^2+2x-3=0   [x-(-3)](x-1)=0   x-(-3)=0或x-1=0   ∴x1=-3,x2=1   (3)解:x^2-2 x=-   x^2-2 x+ =0 (先化成一般形式)   △=(-2 )^2-4 ×=12-8=4&0   ∴x=   ∴x1=,x2=   (4)解:4x^2-4mx-10x+m^2+5m+6=0   4x^2-2(2m+5)x+(m+2)(m+3)=0   [2x-(m+2)][2x-(m+3)]=0   2x-(m+2)=0或2x-(m+3)=0   ∴x1= ,x2=   例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根。 (选学)   分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我   们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方   法)   解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0   即 (5x-5)(2x-3)=0   ∴5(x-1)(2x-3)=0   (x-1)(2x-3)=0   ∴x-1=0或2x-3=0   ∴x1=1,x2=是原方程的解。   例7.用配方法解关于x的一元二次方程x^2+px+q=0   解:x^2+px+q=0可变形为   x^2+px=-q (常数项移到方程右边)   x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)   (x+)2= (配方)   当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)   ∴x=- ±=   ∴x1= ,x2=   当p^2-4q&0时,&0此时原方程无实根。   说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母   取值的要求,必要时进行分类讨论。   练习:   (一)用适当的方法解下列方程:   1. 6x^2-x-2=0 2. (x+5)(x-5)=3   3. x^2-x=0 4. x^2-4x+4=0   5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0   (二)解下列关于x的方程   1.x^2-ax+-b2=0 2. x^2-( + )ax+ a2=0   练习参考答案:   (一)1.x1=-1/2 ,x2=2/3 2.x1=2,x2=-2   3.x1=0,x2= 4.x1=x2=2 5.x1=x2=   6.解:(把2x+3看作一个整体,将方程左边分解因式)   [(2x+3)+6][(2x+3)-1]=0   即 (2x+9)(2x+2)=0   ∴2x+9=0或2x+2=0   ∴x1=-,x2=-1是原方程的解。   (二)1.解:x^2-ax+( +b)( -b)=0 2、解:x^2-(+ )ax+ a· a=0   [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0   ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0   ∴x1= +b,x2= -b是 ∴x1= a,x2=a是   原方程的解。 原方程的解。   测试(有答案在下面)   选择题   1.方程x(x-5)=5(x-5)的根是( )   A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5   2.多项式a2+4a-10的值等于11,则a的值为( )。   A、3或7 B、-3或7 C、3或-7 D、-3或-7   3.若一元二次方程ax^2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个   根是( )。   A、0 B、1 C、-1 D、±1   4. 一元二次方程ax^2+bx+c=0有一个根是零的条件为( )。   A、b≠0且c=0 B、b=0且c≠0   C、b=0且c=0 D、c=0   5. 方程x^2-3x=10的两个根是( )。   A、-2,5 B、2,-5 C、2,5 D、-2,-5   6. 方程x^2-3x+3=0的解是( )。   A、 B、 C、 D、无实根   7. 方程2x^2-0.15=0的解是( )。   A、x= B、x=-   C、x1=0.27, x2=-0.27 D、x1=, x2=-   8. 方程x^2-x-4=0左边配成一个完全平方式后,所得的方程是( )。   A、(x-)2= B、(x- )2=-   C、(x- )2= D、以上答案都不对   9. 已知一元二次方程x^2-2x-m=0,用配方法解该方程配方后的方程是( )。   A、(x-1)^2=m2+1 B、(x-1)^2=m-1 C、(x-1)^2=1-m D、(x-1)^2=m+1   答案与解析   答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D   解析:   1.分析:移项得:(x-5)^2=0,则x1=x2=5,   注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。   2.分析:依题意得:a^2+4a-10=11, 解得 a=3或a=-7.   3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax^2+bx+c=a+b+c,意味着当x=1   时,方程成立,则必有根为x=1。   4.分析:一元二次方程 ax^2+bx+c=0若有一个根为零,   则ax^2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.   另外,还可以将x=0代入,得c=0,更简单!   5.分析:原方程变为 x^2-3x-10=0,   则(x-5)(x+2)=0   x-5=0 或x+2=0   x1=5, x2=-2.   6.分析:Δ=9-4×3=-3&0,则原方程无实根。   7.分析:2x2=0.15   x2=   x=±   注意根式的化简,并注意直接开平方时,不要丢根。   8.分析:两边乘以3得:x^2-3x-12=0,然后按照一次项系数配方,x^2-3x+(-)2=12+(- )^2,   整理为:(x-)2=   方程可以利用等式性质变形,并且 x^2-bx配方时,配方项为一次项系数-b的一半的平方。   9.分析:x^2-2x=m, 则 x^2-2x+1=m+1   则(x-1)^2=m+1.   中考解析   考题评析   1.(甘肃省)方程的根是( )   (A) (B) (C) 或 (D) 或   评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确   选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元   二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为   C。   另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。   2.(吉林省)一元二次方程的根是__________。   评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。   3.(辽宁省)方程的根为( )   (A)0 (B)–1 (C)0,–1 (D)0,1   评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、   B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。   4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。   评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。   5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )   (A)x=3+2 (B)x=3-2   (C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2   评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方   根,即可选出答案。   课外拓展   一元二次方程   一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二   次的整式方程。 一般形式为   ax^2+bx+c=0, (a≠0)   在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它   的倒数之和等于 一个已给数,即求出这样的x与,使   x=1, x+ =b,   x^2-bx+1=0,   他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次   方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。   埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。   在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。   希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中   之一。   公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公   式。   在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种   不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成   不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次   给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的   数学家们为了解三次方程而开始应用复数根。   韦达()除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。   我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学   家还在方程的研究中应用了内插法。[编辑本段]判别方法  一元二次方程的判断式:  b^2-4ac&0 方程有两个不相等的实数根.   b^2-4ac=0 方程有两个相等的实数根.   b^2-4ac&0 方程有两个共轭的虚数根(初中可理解为无实数根).   上述由左边可推出右边,反过来也可由右边推出左边.[编辑本段]列一元二次方程解题的步骤  (1)分析题意,找到题中未知数和题给条件的相等关系;   (2)设未知数,并用所设的未知数的代数式表示其余的未知数;   (3)找出相等关系,并用它列出方程;   (4)解方程求出题中未知数的值;   (5)检验所求的答案是否符合题意,并做答.[编辑本段]经典例题精讲  1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.   2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.   3.一元二次方程 (a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.   4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.[编辑本段]韦达定理  韦达(Vieta's ,Francois,seigneurdeLa Bigotiere)1540年出生于法国普瓦捷,日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。  他1540年生于法国的普瓦图。日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。  韦达定理实质上就是一元二次方程中的根与系数关系  韦达定理(Viete's Theorem)的内容  一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中   设两个根为X1和X2   则X1+X2= -b/a   X1*X2=c/a  韦达定理的推广  韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0  它的根记作X1,X2…,Xn  我们有  ∑Xi=(-1)^1*A(n-1)/A(n)  ∑XiXj=(-1)^2*A(n-2)/A(n)  …  ΠXi=(-1)^n*A(0)/A(n)  其中∑是求和,Π是求积。  如果一元二次方程   在复数集中的根是,那么   法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。   由代数基本定理可推得:任何一元 n 次方程   在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:   其中是该方程的个根。两端比较系数即得韦达定理。   韦达定理在方程论中有着广泛的应用。  韦达定理的证明  设x1,x2是一元二次方程ax^2+bx+c=0的两个解。  有:a(x-x1)(x-x2)=0   所以 ax^2-a(x1+x2)x+ax1x2=0  通过对比系数可得:  -a(x1+x2)=b ax1x2=c  所以 x1+x2=-b/a x1x2=c/a   韦达定理推广的证明  设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。  则有:An(x-x1)(x-x2)……(x-xn)=0  所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)  通过系数对比可得:  A(n-1)=-An(∑xi)  A(n-2)=An(∑xixj)  …  A0==(-1)^n*An*ΠXi  所以:∑Xi=(-1)^1*A(n-1)/A(n)  ∑XiXj=(-1)^2*A(n-2)/A(n)  …  ΠXi=(-1)^n*A(0)/A(n)  其中∑是求和,Π是求积。[编辑本段]计算机解一元二次方程  VB实现方法   '该代码仅可实现一般形式的求值,并以对话框形式显示。  dim a,b,c,i  '在这里添加a、b、c的赋值过程  '例如:a=text1.text  'b=text2.text  'c=text3.text  if a*2 && 0 then  i=((0-b)+Sqr(b^2-4*a*c))/2  msgbox i  i=((0-b)-Sqr(b^2-4*a*c))/2  msgbox i  else  msgbox(&2a为零&)  end if目录[隐藏]定义一般形式一般解法判别方法列一元二次方程解题的步骤经典例题精讲韦达定理计算机解一元二次方程VB实现方法定义 一般形式 一般解法 判别方法 列一元二次方程解题的步骤 经典例题精讲 韦达定理 计算机解一元二次方程 VB实现方法   [编辑本段]定义  在一个等式中,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。  一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.[编辑本段]一般形式  ax^2+bx+c=0(a、b、c是实数a≠0)  x^2+2x+1=0[编辑本段]一般解法  1..配方法(可解所有一元二次方程)  2.公式法(可解所有一元二次方程)  3.因式分解法(可解部分一元二次方程)  4.开方法(可解部分一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)   一、知识要点:   一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基   础,应引起同学们的重视。   一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2   的整式方程。   解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解   法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。   二、方法、例题精讲:   1、直接开平方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的   方程,其解为x=m± .   例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11&0,所以   此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7  ∴3x+1=±√7(注意不要丢解)   ∴x= ...  ∴原方程的解为x1=...,x2= ...  (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11  ∴x= ...  ∴原方程的解为x1=...,x2= ...  2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将固定数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+x=-   方程两边分别加上一次项系数的一半的平方:x^2+x+( )2=- +( )2   方程左边成为一个完全平方式:(x+ )2=   当b2-4ac≥0时,x+ =±   ∴x=...(这就是求根公式)   例2.用配方法解方程 3x^2-4x-2=0   解:将常数项移到方程右边 3x^2-4x=2   将二次项系数化为1:x^2-x=   方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2   配方:(x-)^2=   直接开平方得:x-=±   ∴x=   ∴原方程的解为x1=,x2= .   3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。   当b^2-4ac&0时,求根公式为x1=-b+√(b^2-4ac)/2a,x2==-b-√(b^2-4ac)/2a(两个不相等的实数根)  当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)  当b^2-4ac&0时,求根公式为x1=-b+√(4ac-b^2)i/2a,x2=-b-√(4ac-b^2)i/2a(两个共轭的虚数根)(初中理解为无实数根)  例3.用公式法解方程 2x^2-8x=-5   解:将方程化为一般形式:2x^2-8x+5=0   ∴a=2, b=-8, c=5   b^2-4ac=(-8)2-4×2×5=64-40=24&0   ∴x= = =   ∴原方程的解为x1=,x2= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让   两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个   根。这种解一元二次方程的方法叫做因式分解法。   例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0   (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)   (1)解:(x+3)(x-6)=-8 化简整理得   x^2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x^2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=, x2=- 是原方程的解。   (4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。   小结:   一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般   形式,同时应使二次项系数化为正数。   直接开平方法是最基本的方法。   公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式   法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程   是否有解。   配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法   
请登录后再发表评论!
怎么样的方程呢?要求解,还是。。。得把题目说清楚来啊!
请登录后再发表评论!
支持zzcsgtc1
请登录后再发表评论!
ax2+bx+c=0
请登录后再发表评论!

我要回帖

更多关于 解a 的文章

 

随机推荐