添加剂属于化学沉淀属于物理化学还是物理原理?

请问一下燃油添加剂化学的好还是物理的好?为什么?_百度知道
请问一下燃油添加剂化学的好还是物理的好?为什么?
我有更好的答案
添加剂主要是目的是助燃, 而97是高燃点,这个不是一个概念 压缩比较高的车,用97噪音小,提速也更顺畅 93加助燃剂 这种感受肯定没有 .
采纳率:88%
为您推荐:
其他类似问题
燃油添加剂的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
关于食品添加剂的化学式成分及原理举五个例子
作业帮用户
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
就化学对人类的日常生活的影响来说,化学在我们的日常生活中无处不在.首先,我们的衣、食、住、行无一不用到化学制品. “民以食为天”,我们吃的粮食离不开化肥、农药这些化学制品.1909年哈伯发明的合成氨技术使世界粮食翻倍,如果没有他发明的这个化学技术,那么世界上就有一半的人得不到温饱,那么世界上就多了一半的人的生命面临危机了.加工制造色香味俱佳的食品就更离不开各种食品添加剂,如甜味剂、防腐剂、香料、味精、色素等等,多是用化学合成方法或化学分离方法制成的. 如果没有合成纤维的化学技术,那世界上大多数人就要挨冻了,因为有限的天然纤维根本就不够用.我国1995年的化学纤维产量为330万吨,其中90%是合成纤维③. 何况纯棉纯毛等天然纤维也是棉花、羊毛经化学处理制成的.再有就是合成橡胶,少了合成橡胶,世界上60亿人口又有多少亿人要穿草鞋过冬啊?合成染料更使世界多了一道多彩缤纷的亮丽风景线.所谓“丰衣足食”,是生命得以延续的保证.没有了化学,就没了保证. 再看我们住的房子,石灰、水泥、钢筋,窗户上的铝合金、玻璃、塑料等材料,哪件不是化学制品?离得了铝合金的木制的窗户,也离不开化学制品油漆;就算不用玻璃吧,像一些贫穷人家用的尼龙布甚或用的报纸,不是化学制品又是什么?还有我们的日常生活用品,如牙刷、牙膏、香皂、化妆品、清洁用品等等无一不跟化学沾边,都是化学制剂. 出了门,我们踏在水泥铺成的街道上,看到的是钢筋水泥做的高楼大厦,用以代步的是各种塑料、橡胶、玻璃以及各种合金做的交通工具.这些交通工具还离不开汽油、柴油,各种汽油添加剂、防冻剂和各种润滑油.如此种种,都是化学制品.现代人类根本无法离开人造化学品,我们每天24小时都被人造化学品所包围着. 其次,我们的健康长寿也与化学息息相关.体内某些化学元素平衡失调时,就会导致某些危害人类健康的疾病.1953年,美国化学家Miller S L 实验模拟原始地球上大气的成分,用H,CH4,NH3和水蒸气等,通过加热和火花放电,合成了氨基酸④.1965年和1981年,我国在世界上首次合成了牛胰岛素和酵母丙氨酸转移核糖核酸.蛋白质和核糖的形成是无生命到有生命的转折点.自此我们人类对自身的了解有了新的突破,为我们人类对生命和健康的研究打下了基础.正是有了合成各种抗生素和大量新药物的技术,人类才能控制传染病,才能缓解心脑血管病,使人类的寿命延长25年.人类的健康成长离不开各种营养品和药品.如果没有这些化学药品,世上不知有多少人要受病魔的折磨,不知有多少人会被病魔夺去生命. 就生命本身来说,生命过程本身就是无数化学变化的综合表现. 一个活的有机体 必须有储存和传递信息、繁衍后代、对内调节和对外适应、合理而有效地利用环境的物质与能量等功能.从分子水平看,这些功能正是许多有生物活性分子之间的有组织的化学反应的表现.在这些反应中,一种反应的产物成了另一种反应的起点.生命是一套在细胞内发生的为整体生物所调控的动态化学过程为基础,当这些过程停止时,生命就停止.生命的停止不意味着一切化学反应的终结,而是生物体的分解降解全部变成无机物的另一套过程的开始. 生命是社会之本,很多人认为,21世纪是生命科学的世纪.所以对生命的构成体的研究成为必要.生命科学的研究在解决粮食、能源、人体健康等人类社会主要问题中有重要作用.生命科学的研究离不开化学的研究,它是生物学、化学、物理学、数学、医学、环境学等学科之间互相渗透形成的交叉学科,缺一不可. 生命体中支撑着生命的是无数的有机化合物,重要的有糖类、蛋白质、氨基酸、肽键、酶、核酸等. 糖是自然界存在的一大类具有生物功能的有机化合物.它主要是由绿色植物通过光合作用形成的.它由C、H、O所组成,化学式为Cn(H2O)n,又叫碳水化合物.糖类包括单糖、多糖、淀粉、糖原、纤维素.生物界对能量的需要和利用均离不开糖类.糖类物质的主要生物功能就是通过生物氧化而提供能量,以满足生命活动的能量需要.生物界对太阳能的利用归根到底始于植物的光合作用和CO2的固定,与这两种现象密切相关的都是糖类的合成.光合作用是自然界将光能转化变为化学能的主要途径.糖类不仅是生物体的能量来源,而且在生物体内发挥其它作用,它对各类生物体的结构也起着支持和保护的作用,有时还起到解毒的作用等.总之,糖类是生命体维持生命所不可或缺的
为您推荐:
其他类似问题
扫描下载二维码乳化剂_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
乳化剂是能够改善乳浊液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳浊液的物质。乳化剂是表面活性物质,分子中同时具有亲水基和亲油基,它聚集在油/水界面上,可以降低界面张力和减少形成乳状液所需要的能量,从而提高乳状液的能量。
乳化剂发展简史
20世纪60年代以来,人们开始重视使用的安全性,加强了对无毒、生物降解性好的非离子乳化剂的研究。在食品、化妆品、医药等行业限制某些乳化剂的使用,开发出山梨酸醇脂肪酸酯类、磷脂类、糖脂类乳化剂等新型乳化剂。
20世纪80年代以来,人们对乳化剂提出多功能、高纯度、低刺激、高效率的更高要求,开发出更多的新型乳化剂。
乳浊液的种类已从传统的水包油型和油包水型扩大到多重乳浊液、非水乳浊液、液晶乳浊液、发色乳浊液、凝胶乳浊液、磷脂乳浊液和脂质体乳浊液等多种形式。
乳化剂定义
乳化剂是指能够使乳浊液稳定的表面活性剂。因此,在油水体系中加入乳化剂后,水和油就能相互混合,形成完全分散的。乳化剂不仅仅能够提高乳浊液的稳定性,还能够决定乳浊液的类型。
乳化剂的亲水性和亲油性一般是不平衡的,它们适用的场合也有所差异,如果乳化剂分子的亲水基比亲油基大而强,属于亲水性的乳化剂,易形成水包油(O/W)型乳浊液;相反,如果乳化剂分子的亲油基团比亲水基大而强,它则属于亲油性的乳化剂,易形成油包水(W/O)型乳浊液。一般的,亲水性强的乳化剂适用于O/W型乳浊液,亲油性强的乳化剂适用于W/O型乳浊液。
一般可用“亲水亲油平衡值”(即HLB)来表示其乳化能力的差别。若HLB愈大,则亲水作用愈大,即可稳定水包油型乳化体;反之,HLB愈小,则亲油作用愈大,即可稳定油包水型乳化体。
乳化剂根据其结构和性质都不相同,乳化剂可分为阴离子型、阳离子型和非离子型;根据其来源可分为天然乳化剂和合成乳化剂;按照作用类型可以分为表面活性剂、黏度增强剂和固体吸附剂;按其亲油亲水性可分为亲油型和亲水型
乳化剂性质
双亲性:所有乳化剂的分子中均含有亲水基和亲油基两个功能基团,亲水基能吸引水层,亲油基能包围油层。
润湿性:降低液体和固体表面张力,使液体迅速扩散到全部表面,是有效的润滑剂。
与淀粉结合防止老化,改善产品质构;与蛋白质相互作用增进面团的网络结构,强化面筋网,增强韧性和抗力,使蛋白质具有弹性,增加体积;对结晶物质结构的改善;稳定气泡和充气作用;降低液体和固体表面张力,使液体迅速扩散到全部表面,是有效的润滑剂;破乳消泡作用;提高乳浊液的稳定性。乳化剂能稳定食品的物理状态,改进食品组织结构,简化和控制食品加工过程,改善风味、口感,提高食品质量,延长货架寿命,广泛应用于焙烤、冷饮、糖果等食品行业。
乳化剂应用领域
乳化剂焙烤类
乳化剂可与面筋蛋白相互作用,并强化面筋网络结构,使得面团保气性得以改善,同时也可增加面团对机械碰撞及发酵温度变化的耐受性。
面粉在成团过程中,面筋形成网络状结构,如果该结构较为脆弱时,则由产生的CO2将会消失。而当面团中添加了乳化剂如PANODAN、DATEM、SSL、ARTODAN等时,面筋结构则得以加强,从而将产生的CO2气体良好的保持。此结构给予面筋一个良好的束缚,并使得面团下降,从而增加面筋蛋白质网的延展性,使产品更加柔软而易于整形。
乳化剂可以将会使面包组织柔软并保持较长时间。因为它能减少水分从中流失,延缓硬质蛋白质的形成。而且防止在烘焙冷却后,随温度的降低、时间延长,小麦面团直链淀粉会回凝成不溶状态,进而变硬、变脆,从而使面包的柔软度大大降低。
饱和蒸馏的单甘油酸酯则使最具代表性的、有效的面团。加入单甘油酸酯等乳化剂面团中,经过搅拌而被淀粉分子吸收,在面团温度达到约55℃时,乳化剂会与直链淀粉作用形成螺旋状复合体。这种反应将会提高淀粉粒糊化温度,减少了低温时面心中糊化淀粉的总量,从而降低淀粉分子的程度,并从淀粉颗粒内部阻止支链淀粉凝聚,防止淀粉的老化、回生。
在制作蛋糕,例如海绵蛋糕、 磅蛋糕、夹层蛋糕时,拌打入空气形成乳沫,乳化剂中饱和脂肪酸链可使面糊和气室的分界区域形成光滑的薄膜状结构,这将会稳定气室,同时增加气室数量。添加乳化剂,可使面糊比重下降、蛋糕体积增大,并获得良好的品质及外观。
在糕点中使脂肪均匀分散,防止油脂渗出,改善口感,提高脆性,并能减少蛋的用量(用量一般为0.3%~1%)
乳化剂饮料类
植物蛋白饮料
乳化剂可以使得植物蛋白油脂不分层,制备稳定的乳液。
冲剂的粉末饮料中加乳化剂可提高其在水溶液中的润湿性、分散性。巧克力饮料中加乳化剂可提高分散性,可可饮料中加乳化剂也使分散性好
稳定天然香料油的乳化,防止制品中香料的损失。起乳化作用的有乳化香料,赋予饮料以香气和浊度,用高HLB值的酯及皂树皂苷,可调制成乳化香料。添加乳化香料的饮料多属酸性,而聚甘油脂肪酸酯和皂树苷耐酸性优,因而十分合适。亲水性好与耐酸性高的也可使用。、咖啡饮料、人造炼乳可使用甘油酸酯、山梨糖醇酐脂肪酸酯、丙二醇脂肪酸酯等。
一般在水中乳化剂的起泡力以脂肪酸碳数12附近的最大,皂树皂苷的起泡力也很强。欧美各国的起泡性饮料,都添加皂树皂苷作,使具有存在大量微细空气泡口感良好,产品质量提高。
加入反乳化作用的乳化剂可做,用于乳制品加工,以破坏乳液的平衡,含有的乳化剂,具有抑制泡沫的作用。
乳化剂甜品类
增强乳化、缩短搅拌时间。有利于充气和稳定泡沫,使制品产生微小冰晶和分布均匀的微小气泡,提高比体积,改善热稳定性,从而得到质地干燥、疏松、保形性好,表面光滑的冰淇淋产品。用量为0.2%~0.5%。
增加巧克力颗粒间的摩擦力和流动性,降低粘度,增进脂肪分散,防止起霜。提高热稳定性,提高产品表面光滑度。
使脂肪均匀分散,增加糖膏的流动性,易于切开和分离,提高生产效率,增进产品质地,降低粘度,改善口感。
提高基料混溶性、均匀性、改善可塑性、脆性、防止生产时的粘着,从而提高生产效率,改的乳化和分散,增进风味,一般油包水型乳化剂效果更佳。用量为0.5%~1%。
HLB值的和其他亲水性乳化剂配合,可提高饮料及炼乳的乳化稳定性。
改善油水相容,将水分充分乳化分散,提高乳液的稳定性,用量为0.1%~0.5%。
乳化剂日用品类
卸妆油里面添加了乳化剂,乳化作用可以使得脸上的油性彩妆以及污垢溶解。冲洗后若仍然双手满脸油腻腻粘乎乎,就是乳化作用比较差。寒冷的温度下会影响这个过程,所以,冬季最好用温水来清洗。
化妆品中还有很多乳状液产品,你平时使用的面霜、乳液、卸妆乳、基本洁面大多数皆为乳状液,这些产品为了要实现包装盒上标识的至少三年的保质期,都需要使用乳化剂来提高稳定性。
乳化剂化工类
a)起泡性:乳化沥青在运输和施工过程中常常会有发泡现象,这与乳化剂的特性有直接关系。过多的泡沫影响乳化沥青的储存和运输。除了采用机械方法如输送乳化沥青时从罐的下部引入,减少由于冲击产生的泡沫。还可以采用化学方法,加入消泡剂,如HLB在1-4范围内的表面活性剂OP等,或者加入酒精、异丙醇等。
b)乳化剂对蒸发残留物的影响:乳化沥青只是使用过程中的暂存形式,最终表现的能仍是沥青性能,残留的乳化剂会对沥青性能产生影响。这与乳化剂的种类、加量、质量优劣有关系,在实际应用中要考虑。  c )储存稳定性:乳化剂的种类、乳化剂的浓度以及影响乳化剂乳化作用的各种因素都会影响乳化沥青的稳定性。乳化剂本身就有快裂、中裂、慢裂三种类型。制备的乳化沥青也相应的分为快裂、中裂、慢裂三种。它们的稳定性逐次增强。用相同的乳化剂制备乳化沥青,由于所用乳化剂用量的不同,在一定程度上也影响乳化沥青的稳定性。随着乳化剂用量的增加,沥青微粒变小,沉降速度减慢,沥青微粒间的电位值增加,乳液的粘度升高,贮存的沉降值降低,进而乳液的质量和稳定性提高。但是,当乳化剂增加到一定量后,其稳定性不再发生明显的变化。因而,正确选择乳化剂适宜的用量范围,既保证了乳化液的质量和稳定性,又不造成经济上的浪费。
强力去污乳化剂是一种由高浓缩表面活性剂合成的低泡沫,与主洗粉配合使用可有效去除工装、台布、餐巾上的重油污垢,可防止毛巾、床单等织物的污垢再沉淀,提高所洗织物的洗涤质量。
乳化剂一般是表面活性剂与和油脂的混合物,但也可以溶于水。它可以通过把油和油脂分解成非常细小的颗粒而将其形成的污垢从面料驱逐下来。一旦乳化在水中,油和油脂即可通过稀释作用被移除。
乳化剂有助于在洗涤过程中去除衣物上粘着的矿物质油或油脂。如果和适量的碱和洗涤剂混合则可以用来去除汽油。碱和喜油的表面活性剂相结合可以将油和油脂形成的小珠分解成非常细小的颗粒。之后,乳化剂就会将其包围并在其表面形成—层奶状物质。这样在乳化和溶入水之后,油和油脂就会通过稀释作用而被去除了。
农业生产商使用的农药绝大多数都是不溶于水的有机物,不能直接配成水溶液,通常是将原药溶于有机溶剂如中,并加入亲水性的乳化剂,制成乳油,使用时再将乳油加入水中形成O/W型的乳浊液后才使用,乳化剂的加入大大降低了溶液的表面能,使乳浊液的液滴表面形成一层保护膜,增强了药剂在植物体表面或害虫表面的润湿、展布以及附着能力,从而提高药效。目前应用于农药的乳化剂有脂肪聚氧乙烯类、烷基苯酚聚氧乙烯醚类、磺酸盐类、磺酸脂类、酰胺类、有机硅类等
乳化剂食品乳化剂
食品乳化剂需求量最大的为脂肪酸单甘油脂,其次是蔗糖酯、山梨糖醇脂、、、等。
蔗糖酯由于酯化度可调,HLB值宽广,既可成为W/O型,又可成为O/W型乳化剂,为当前世界上颇为引人注目的乳化剂。
大豆磷脂是天然产物,它不仅具有极强的乳化作用,且兼有一定的营养价值和医药功能,是值得重视和发展的乳化剂,但在磷脂的提纯、以及化学改性方面尚需加强研究。我国所用即为。
山梨醇酯类开发较早,用于食品工业历年耗量约占食品乳化剂总量的10%。
月桂酸单甘油酯(GML)天然存在于母乳中,在婴儿自身的免疫系统发育完全之前,GML对婴儿的健康起着保护作用。研究发现,GML不仅可用作食品乳化剂,广泛添加于焙烤食品中,起改善米面制品品质的作用,而且GML也是一种安全、高效、广谱抗菌剂,其抗菌效果不受pH影响,优于山梨酸、苯甲酸、对羟基苯甲酸酯及脱氢醋酸等常用防腐剂。
以甘油酯为主体的系列产品开发应用正在发展阶段,欧美各国甘油酯衍生物的消费量约占总消费量的20%,其中聚甘油酯由于其HLB值范围宽,乳化能力强,用量不断增加。食品乳化剂的应用开发现已由单一品种的需求结构趋向于复配型,即生产几种基本乳化剂将其复合搭配出许多的品种,发挥其协同效应。我国广泛应用的乳化剂复配产品有面包改良剂、蛋糕发泡剂等。
食用乳化剂是消耗量较大的一类,各国许可使用的品种很多,现就我国许可使用的品种介绍如下:
月桂酸单甘油酯(GML),乙酰化单甘油脂肪酸酯,硬脂酰乳酸钙,双乙酰酒石酸,单(双)甘油酯,氢化松香甘油酯,松香甘油酯,单硬脂酸甘油酯,六聚甘油单油酸酯,六聚甘油单硬脂酸酯,改性大豆磷脂,辛癸酸甘油酯,聚氧乙烯山梨醇酐,单月桂酸酯,聚氧乙烯山梨醇酐,单油酸酯聚氧乙烯山梨醇酐,单棕榈酸酯,聚氧乙烯山梨醇酐,单硬脂酸酯,聚氧乙烯木糖醇酐,单硬脂酸酯,丙二醇脂肪酸酯,硬脂酸钾酷蛋白酸钠,硬脂酰乳酸钠,山梨醇酐单月桂酸酯,山梨醇酐单油酸酯,山梨醇酐单棕榈酸酯,山梨醇酐单硬脂酸酯,山梨醇酐三硬脂酸酯,乙酸异丁酸蔗糖糖酯,脂肪酸蔗糖酯,蔗糖酯三聚甘油单硬脂酸酯,木糖醇酐单硬脂酸酯
乳化剂天然乳化剂
橄榄来源的乳化剂是一种安全,不含PEG,温和的,100%来自于可再生原料的天然O/W 乳化剂。它非常容易制备稳定的液晶乳液,高温和低温下都有显著稳定性。它有轻薄和丝般光滑的触感,涂抹铺展性好。拥有长时间保湿和滋润效果,保护皮肤屏障层,能够 快速渗透入皮肤,增加活性物的活性。橄榄来源的乳化剂适用在婴儿润肤产品上。
面包用品质改良剂使用最多的乳化剂有(ssl)、(csl)、双乙酰酒石酸单甘油酯(datem)、蔗糖脂肪酯(se)、蒸馏单甘酯(dmg)等。各种乳化剂通过面粉中的淀粉和蛋白质相互作用,形成复杂的复合体,起到增强面筋,提高加工性能,改善面包组织,延长保鲜期等作用,添加量一般为0.2%~0.5%(对面粉计)。
硬脂酰乳酸钠/钙(ssl/csl):
具有强筋的保鲜的作用。一方面与蛋白质发生强烈的相互作用,形成面筋蛋白复合物,使面筋网络更加细致而有弹性,改善酵母发酵面团持气性,使烘烤出来的面包体积增大;另一方面,与直链淀粉相互作用,形成不溶性复合物,从而抑直链淀粉的老化,保持烘烤面包的新鲜度。ssl/csl在增大面包体积的同时,能提高面包的柔软度,但与其他乳化剂复配使用,其优良作用效果会减弱。
双乙酰酒石酸单甘油酯(datem):
能与蛋白质发生强烈的相互作用,改进发酵面团的持气性,从而增大面包的体积和弹性,这种作用在调制软质面粉时更为明显。如果单从增大面包体积的角度考虑,datem在众多的乳化剂当中的效果是最好的,也是溴酸钾替代物一种理想途径。
蔗糖脂肪酸酯(se):
在面包品质改良剂中使用最多的是蔗糖单脂肪酸酯,它能提高面包的酥脆性,改善淀粉糊黏度以及面包体积和蜂窝结构,并有防止老化的作用。采用冷藏面团制作面包时,添加蔗糖酯可以有效防止面团冷藏变性。
蒸馏单甘酯(dmg):
主要功能是作为面包组织软化剂,对面包起抗老化保鲜的作用,并且常与其他乳化剂复配使用,起协同增效的作用
乳化剂相关类别
聚丙烯酰胺乳化剂
一般我们认为是在一定条件下,两种或多种互不相溶的聚合物形成的新型乳液,也有业界的专家认为其实质应是一种“双水相”体系,是两种聚合物混合形成的乳液。有研究人员给出了具体的定议:PAM“水包水”乳液是指AM与其它水溶性单体在一种低分子量水溶性聚合物稳定剂的无机盐溶液中进行分散聚合反应所得到外类似乳液的水分散体系。聚合过程中,反应生成的PAM聚合物在达到临界链长时,由于盐析效应而不断沉淀到位低分子量水溶性聚合物液中且互不相溶,其中聚合物稳定剂及其所携带的水化水作为连续相(外相)包裹着作为分散相(内相)的PAM聚合物及其水化水,由于内相和外相都是水相且两相不互溶,因此称之为“水包水”乳化剂。
非离子表面活性剂
一、醚类非离子助剂
1.烷基酚聚氧乙烯醚类
1)壬基酚聚氧乙烯醚:NP系列、农乳100号等
2)辛基酚聚氧乙烯醚:乳化剂OP系列、磷辛10号(仲辛基酚聚氧乙烯醚)
3)双、三丁基酚聚氧乙烯醚: (C4H9)--O(EO)nH
4)烷基酚聚氧乙烯醚:乳化剂11号(旅顺化工厂)
5)苯乙基酚聚氧丙烯聚氧乙烯醚:乳化剂12号(旅顺化工厂)
2.苄基酚聚氧乙烯醚
1)二、三苄基酚聚氧乙烯醚:乳化剂BP、梧乳BP等
3)苄基二甲基酚聚氧乙烯醚:农乳400号
4)二苄基异丙苯基酚(又称二苄基复酚)聚氧乙烯醚:乳化剂BC
5)二苄基联苯酚聚氧丙烯聚氧乙烯醚:宁乳31号
3.苯乙基酚聚氧乙烯醚
1)苯乙基酚聚氧乙烯醚:农乳600号与500号等
2)苯乙基异丙苯基酚聚氧乙烯醚:农乳600-2号等
3)二苯乙基复酚聚氧乙烯醚:乳化剂BS,与500号复配对乳化性很好
4)二苯乙基联苯酚聚氧乙烯醚
5)苯乙基萘酚聚氧乙烯醚
4.及其类似产品
2)异辛基聚氧乙烯醚 Igepal CA
3)基聚氧乙烯醚
4)异十三醇聚氧乙烯醚
乳化剂相关书籍
5)脂肪醇聚氧乙烯醚
5.苯乙基酚聚氧乙烯醚聚氧丙烯醚及其类似产品
1)苯乙基酚聚氧乙烯醚
2)苯乙基苯丙基酚聚氧乙烯醚
3)苯乙基联苯酚聚氧乙烯醚
6.脂肪胺聚氧乙烯醚
1)脂肪胺(又称烷基胺)聚氧乙烯醚
2)脂肪酰胺聚氧乙烯醚
3)烷基胺氧化物
4)季胺烷氧化物及其类似产品
二、酯类非离子助剂
1、脂肪酸环氧乙烷加成物
2)硬脂酸聚氧乙烯酯
3)松香酸聚氧乙烯酯
2.蓖麻油环氧乙烷加成物及其衍生物
3.多元醇脂肪酸酯及其环氧乙烷加成物
失水山梨醇脂肪酸酯:斯潘系列20,40,60,80,85,亲油性较强
失水山梨醇脂肪酸酯环氧乙烷加成物:Tween系列,比斯潘大
4.为基本原料的非离子助剂
1)二聚甘油和脂肪酸酯
2)双甘油聚丙二醇醚
3)甘油聚氧乙烯醚聚氧丙烯醚脂肪酸酯
三、端羟基封闭的非离子助剂
1、对称结构的端羟基封闭的非离子助剂
2.不对称结构的端羟基封闭的非离子助剂
四、高分子型助剂
一、非离子型
1.烷基酚聚氧乙烯醚甲醛缩合物:农乳700号
2.芳烷基酚聚氧乙烯醚甲醛缩合物
1)苯乙基酚聚氧乙烯醚甲醛缩合物:宁乳36号、农乳700-1号等
2)异丙苯基酚聚氧乙烯醚甲醛缩合物:农乳700-2号、宁乳37号等
3)苄基酚聚氧乙烯醚甲醛缩合物:日本Sorpol PPB150、200
3.联苯酚聚氧乙烯醚甲醛缩合物
4.聚乙烯醇完全水解的聚乙烯醇98-99%、部分水解的水解度为88-89%
5.聚氧乙烯聚氧丙烯嵌段共聚物,聚醚类分子量有良好的去污力,分子量更高的分散力较好,如环氧乙烷-环氧丁烷共聚物、环氧乙烷-环氧丙烷-环氧丁烷共聚物
二、阴离子型
1.聚合羧酸盐:聚丙烯酸、聚丙烯酸钠、聚丙烯酰胺
2.烷基酚聚氧乙烯醚甲醛缩合物硫酸盐:SOPA-Ⅱ(270),SOPA-Ⅴ(570)
3.烷基萘磺酸甲醛缩合物及其类似品种:MF,MSF
4.酚甲醛缩合物磺酸盐及其类似品种
1)酚磺酸萘磺酸甲醛缩合物钠盐
2)酚甲醛缩合物磺酸钠盐:分散剂HN(又称分散剂S),分散剂C
3)酚-脲-甲醛缩合物磺酸盐
5.缩甲基纤维素及其衍生物
6.黄原酸胶 XG
7.木质素磺酸盐:脱糖木质素磺酸钠M-9等
乳化剂注意事项
1.不同HLB值的乳化剂可制备不同类型的乳液,选择合适的乳化剂是取得最佳效果的基本保证。
2.由于复合乳化剂有协同效应,通常多采用复配型乳化剂,但在选择乳化剂“对”时要考虑HLB高值与低值相差不要大于5,否则得不到最佳稳定效果。
3.乳化剂加入食品体系之前,应在水或油中充分分散或溶解,制成浆状或乳状液,乳状液的制备方式有三种:
(1)乳化剂直接溶于水中,在激烈搅拌下,将油加入。
(2)乳化剂溶于油相(加热),将水直接加入。(或上述混合物直接加入水中)
乳化剂发现影响
由于技术的提升,使得乳化剂在食品加工过程中扮演着相当重要的角色,受到烘焙业者广泛重视,并在烘焙产品中广为利用,进而改变产品的内部结构,提高了产品品质。乳化剂的需求在世界市场上有逐步上升之趋势,美国一年乳化剂的消耗可达五百万美金。而乳化剂最大的市场即面包工业,其中近50%为单甘油脂。大豆磷脂每年的世界产量业在不断上升,在西点及休闲食品中具有惊人的潜力。
王宇. 乳化剂的作用机理及其应用[J]. 山东化工, ):111-113.
王继强, 龙强, 李爱琴,等. 乳化剂的分类、作用原理及在养殖业上的应用研究进展[J]. 中国饲料添加剂, -37.
荣鸿裕, 沈益民. 乳化剂在烘焙食品中的应用技术[C]// 中国粮油学会食品专题学术讨论会. 1987.
赵正涛, 李全阳, 王秀菊. 乳清蛋白和乳化剂作用机理的研究[J]. 乳业科学与技术, ):19-22.
胡德亮, 陈丽花, 黄恺. 食品乳化剂[M]. 中国轻工业出版社, 2011.
张守文. 对丹麦一些乳化剂的性能及在食品中作用效果的研究[J]. 中国粮油学报, -30.
张亮, 徐宝财. 食品乳化剂的安全性及JECFA评价结果[J]. 精细与专用化学品, ):5-8.
本词条认证专家为
副教授审核
重庆师范大学
中国食品科学技术学会是...
提供资源类型:内容
清除历史记录关闭【图文】食品中常见的添加剂与有害物质_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
食品中常见的添加剂与有害物质
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢食品添加剂都是化学合成物质吗_百度知道
食品添加剂都是化学合成物质吗
我有更好的答案
下午好,不是的——食品添加剂只是我国对于可食用产品中,作为非主要使用食材之外的辅料的总称,对于其化学成份没有主观定义。比如糖精、安赛蜜、苯甲酸钠和碳酸氢钠等等是人工化学合成物,白砂糖、海藻酸钠、栀子蓝色素和卵磷脂等等是天然植物成份,目前绝大多数食品添加剂均为天然成份少部分为国家允许添加量内的合法人工化合物,依据请详细查阅今年的GB《中华人民共和国食品添加剂标准》一览,请酌情参考,2018版尚在修订中。另外吐槽一下,除了味精之外其他的都是化学产品——事实正好相反,「味精」是谷氨酸钠大量生产可以利用化学合成出来,而酒精(乙醇,粮食发酵)、醋精(乙酸,粮食发酵)和茉莉精(乙酸苄酯的可溶性淀粉细末,提取自天然茉莉花)等等「精」都不是人工化学合成物,因为化工合成成本是远远高昂于直接从植物中提取的,所以,请不要盲目的看到有「精」这个汉字存在,就认为一定是人工合成化学品。
采纳率:93%
来自团队:
大多数是,除味精外其它的精都是化学产品。
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。

我要回帖

更多关于 化学食品添加剂 的文章

 

随机推荐