已知如图 等边三角形abcC当中,D,E分别为...

请教一道数学题:如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) . (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) (3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?猜想:点F是否在直线NE上?
Dandelion00264
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=DF,而∠MDF和∠NDE都是60°加上一个∠NDF,因此三角形MDF和EDN就全等了(ASA).由此可得出EN=MF,∠DNE=∠DMB,已知了BD=DF,DM=DN,因此三角形DBM≌三角形DFN,因此∠DFN=∠DBM=120°,因此∠DFN是三角形DFE的外角因此N,F,E在同一直线上.(2)(3)证法同(1)都要证明三角形MDF和EDN全等,证明过程中都要做出三角形的三条中位线,然后根据三条中位线分成的小等边三角形的边和角相等来得出两三角形全等的条件,因此结论仍然成立.(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,(2)成立.方法一:连接DE,DF.∵△ABC是等边三角形,∴AB=AC=BC又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线、∴DE=DF=EF,∠FDE=60°又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE∴MF=NE.方法二:延长EN,则EN过点F.∵△ABC是等边三角形,∴AB=AC=BC又∵D,E,F是三边的中点,∴EF=DF=BF∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN又∵DM=DN,∠ABM=∠DFN=60°,∴△DBM≌△DFN∴BM=FN∵BF=EF,∴MF=EN.方法三:连接DF,NF∵△ABC是等边三角形,∴AB=BC=AC又∵D,E,F是三边的中点,∴DF为三角形的中位线,∴DF= AC= AB=DB又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,∴∠BDM=∠FDN在△DBM和△DFN中,DF=DB,DM=DN,∠BDM=∠NDF,∴△DBM≌△DFN.∴∠B=∠DFN=60°又∵△DEF是△ABC各边中点所构成的三角形,∴∠DFE=60°∴可得点N在EF上,∴MF=EN.(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).点评:本题主要考查了等边三角形的性质/三角形中位线定理以及全等三角形的判定和性质等知识点,根据等边三角形的性质以及三角形中位线定理得出全等三角形的条件是解题的关键.
为您推荐:
其他类似问题
/math/ques/detail/5c0e487b-788b-4d03-9d71-0af3d060cf8a/math/ques/detail/3acca2bc-f06c-4ebb-88a9-c46daf42f330求采纳 我要升级
(1)相等, DMB和DNF全等啊。角DBM=角DNF=120,在直线上(2)同样全等,在直线上(3)还是这两个全等啊请问能有过程吗?全等嘛,DM=DN DB=DF角MDB=角NDF三个问题都是这三个相等,导致的全等。角DBM=角DFN,第一个是等于120,第二,3个是等于60,第一次打错了= =所以在直线上...
全等嘛,DM=DN DB=DF角MDB=角NDF三个问题都是这三个相等,导致的全等。角DBM=角DFN,第一个是等于120,第二,3个是等于60,第一次打错了= =所以在直线上
扫描下载二维码已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与BC平行时(如图1),易证:BE+CF=AD,_答案网
您好,欢迎来到答案网! 请&&|&&&
&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&
&已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与BC平行时(如图1),易证:BE+CF=AD,分类:&&&【来自ip:&16.178.111.192&的&热心网友&咨询】
&问题补充:
已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与BC平行时(如图1),易证:BE+CF=AD,当直线m绕点O旋转到与BC不平行时,图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF之间又有怎样的数量关系?请写出你的猜想,不需证明.
&(此问题共187人浏览过)我要回答:
&&热门焦点:&1.&&&&2.&&&&3.&
&网友答案:
解:图2结论:BE+CF=AD证明:连接AO并延长交BC于点G,作GH⊥EF于点H,由图1可得AO=2?OG∵AD∥GH,∴△ADO∽△GHO.∴AD=2?GH连接FG并延长交EB的延长线于点M,△BMG≌△CFG,BM=CF,MG=FG∵GH∥EM,∴△FHG∽△FEM.∴BE+BM=2?GH∴BE+CF=AD图3结论:CF-BE=AD解析分析:连接AO并延长交BC于点G,作GH⊥EF于点H,由图1可得AO=2?OG,进而可以证明△ADO∽△GHO得AD=2?GH,连接FG并延长交EB的延长线于点M,即可求证△FHG∽△FEM,即可求得BE+CF=AD,即可解题.点评:本题考查了相似三角形的传递性,考查了相似三角形对应边比值相等的性质,考查了全等三角形的判定,本题中求证△FHG∽△FEM是解题的关键.
&&相关问题列表
&&[前一个问题]&&&
&&[后一个问题]&&&
&&您可能感兴趣的话题
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、
&1、&2、&3、&4、&5、&6、&7、&8、&9、&10、已知等边三角形ABC中,E、D分别在AB,AC上,若AD=BE,且CE,BD交于点o,CF⊥BD于F.求证:(1)△BEO~△CEB(2)OF=1/2OC
证明:由已知得∠A=∠B=60度 AD=BE AB=BC所以△ADB全等于△EBC所以角ABD等于角ECB因为角EOB等于角OBC+OCB=角OBC+角ABD=60度=角B所以角EBO=角ECB 角EOB=角B 且边不等 得出三角形BEO相似三角形CEB在直角三角形OFC中 角FOC=角EOB=60度 所以OF/OC=1/2
为您推荐:
其他类似问题
扫描下载二维码当前位置:
>>>(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边..
(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
题型:解答题难度:中档来源:不详
(1)判断:EN与MF相等(或EN=MF),点F在直线NE上&& ······ 3分(说明:答对一个给2分)(2)成立.································ 4分证明:法一:连结DE,DF.&& ··········································································· 5分∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE. ················································································ 7分在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE. ··············································································· 8分∴MF=NE.&&&&&& ··············································································· 9分法二:延长EN,则EN过点F.&&& ······································································ 5分∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴EF=DF=BF.&&∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN.······················· 7分又∵DM=DN,∠ABM=∠DFN=60°,∴△DBM≌△DFN.································· 8分∴BM=FN.∵BF=EF,&∴MF=EN.···························································· 9分法三:连结DF,NF. ······················································································ 5分∵△ABC是等边三角形,∴AC=BC=AC.又∵D,E,F是三边的中点,∴DF为三角形的中位线,∴DF=AC=AB=DB.又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,∴∠BDM=∠FDN.&………………7分在△DBM和△DFN中,DF=DB,DM=DN,∠BDM=∠NDF,∴△DBM≌△DFN.∴∠B=∠DFN=60°.…………………………………………………………………8分又∵△DEF是△ABC各边中点所构成的三角形,∴∠DFE=60°.∴可得点N在EF上,∴MF=EN.………………………………9分(3)画出图形(连出线段NE), ······························································· 10分MF与EN相等及点F在直线NE上的结论仍然成立(或MF=NE成立). ················ 11分略
马上分享给同学
据魔方格专家权威分析,试题“(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边..”主要考查你对&&轴对称,用坐标表示平移,平移,尺规作图&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
轴对称用坐标表示平移平移尺规作图
轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。  4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。平移:把一个图形整体沿某一方向移动一定的距离, 图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。图形平移与点的坐标变化之间的关系:(1)左右平移:原图形上的点(x、y),向右平移a个单位(x+a,y);原图形上的点(x、y),向左平移a个单位(x-a,y);(2)上、下平移:原图形上的点(x、y),向上平移a个单位(x,y+b);原图形上的点(x、y),向下平移a个单位(x,y-b)。定义:将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等(3)多次连续平移相当于一次平移。(4)偶数次对称后的图形等于平移后的图形。(5)平移是由方向和距离决定的。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点1 原来的图形的形状和大小和平移后的图形是全等的。2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。平移作图的步骤:(1)找出能表示图形的关键点;(2)确定平移的方向和距离;(3)按平移的方向和距离确定关键点平移后的对应点;(4)按原图的顺序,连结各对应点。 尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图:作一条线段等于已知线段;作一个角等于已知角;作线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线。 还有:已知一角、一边做等腰三角形已知两角、一边做三角形已知一角、两边做三角形依据公理:还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。 注意:保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。 尺规作图方法:任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.
发现相似题
与“(本小题满分11分)如图,已知等边三角形ABC中,点D,E,F分别为边..”考查相似的试题有:
734256705868202987925793700381899476如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.(这个问,有两个图一个成立一个好像不成立不知道对不对···不要复制粘贴······)
血刺潇潇o椙
1)EN=MF,点F在直线NE上2)EN=MF成立连接DE,DF∵∠EDF=∠MDN=∠BDF=60°∴∠NDF=∠BMD∠EDN=∠MDF又,DE=DF,DN=DM∴△DEN≌△DFMEN=MF3)仍然成立(这和在左侧一样,只不过是△DMN比△ABC大)
为您推荐:
其他类似问题
扫描下载二维码

我要回帖

更多关于 如图 等边三角形abc 的文章

 

随机推荐