1-2+3-4+5-6+……+99-1...

举一反三(巩固练习,成绩显著提升,去)
根据问他()题库系统分析,
试题“计算:100+99+98-97-96+95+94+93-92...”,相似的试题还有:
102-101+100+99-98-97+96+95-94-93+92+91-90-89+…+8+7-6-5+4+3-2-1=_____.
100+99+98-97-96-95+…+10+9+8-7-6-5+4+3+2-1=_____.
计算:(1)99++3(2)20-19+18-17+…+4-3+2-1(3)100+99+98-97-96-95+94+93+92-91-90-89+88+…+10+9+8-7-6-5+4+3+2-1(4).您的举报已经提交成功,我们将尽快处理,谢谢!
1?-2?+3?-4?+5?-6?······+97?-98?+99?-100?
=1?+(-2?+3?)+(-4?+5?)...(-98?+99?)-100?...
大家还关注
(window.slotbydup=window.slotbydup || []).push({
id: '2081942',
container: s,
size: '1000,60',
display: 'inlay-fix'13、16、19(2)2、6、10、14、18、22、26(3)3、6、9、12、15、18、21(4)33、28、23、18、13、8、3(5)10、11、13、16、20、25、31(6)1、4、9、16、25、36、49、64(7)3、2、5、2、7、2、9、2、11、2(8)13、2、15、4、17、6、19、8(9)(6、9)、(7、8)、(10、5)、(2、13)(10)(1、24)、(2、12)、(3、8)、(4、6)
分析:(1)根据已知的四个数可得排列规律:从第二项开始每次递增3.(2)根据已知的四个数可得排列规律:从第二项开始每次递增4.(3)根据已知的四个数可得排列规律:从第二项开始每次递增3.(4)根据已知的三个数可得排列规律:从第二项开始每次递减5.(5)根据已知的五个数可得排列规律:从第二项开始每次递增1、2、3….(6)根据已知的五个数可得排列规律:每项是项数的平方数.(7)根据已知的六个数可得排列规律:从3开始奇数项每次递增2;偶数项不变,是2;(8)根据已知的个数可得排列规律:从13开始奇数项每次递增2;偶数项从2开始每次递增2;(9)根据已知的四个数可得排列规律:每一组的两个数的和都为15.(10)根据已知的三个数可得排列规律:每一组的两个数的积都为24,据此解答.解答:解:(1)10+3=13,(2)14+4=14,(3)12+3=15,(4)23-5=18,13-5=8,(5)20+5=25,(6)6×6=36,(7)7+2=9,(8)17+2=19,6+2=8,(9)15-13=2,(10)24÷4=6;故答案为:13,18,15,18,8,25,36,9,2,19,8,2,6.点评:数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.
请在这里输入关键词:
科目:小学数学
在横线上填上“<”、“>”或“=”.4.3×1.6>4.3&&&&&
7.4÷1.85<7.4&&&&&
7.5÷1=7.5&&&&&&&&&&&
3.5×0.17<3.5
6.5÷0.26>6.5&&&&
8.9×1=8.9÷1&&&&&
4.3÷1.7<4.3×1.7&&&&&&&&
9.2×1=9.2.
科目:小学数学
按规律填数(1)1,4,7,10,13,16,19.(2)1,2,2,4,3,8,4,16.(3)0,1,4,9,16,25,36.(4)0,1,1,2,3,5,8,13.(5)2,6,18,54,162,486.
科目:小学数学
按规律填数(1)1,4,7,10,13,16,19.(2)1,2,2,4,3,8,4,10.(3)0,1,4,9,16,25,36.
科目:小学数学
题型:阅读理解
0.62-0.32=
0.75×100=
0.02×0.5=
0.75÷0.25=
0.36÷0.4=
0.64÷0.8=
0.72÷3.6=
0.35×0.6=
3.08×0.01=
4.95×1000=
4.95÷0.9=
9.65÷0.1=
0.325×100=
0.56÷0.7=
3.28×0.1=
3.9÷0.13=
0.01×0.1=
0.25×0.4=
1.25×0.8=
3.2÷0.04=
0.22×102=
16.5÷0.5=
0.84÷2.1=
7.8÷0.01=
0.56÷0.8=
0.18÷0.2=
4.5×0.02=
0.012×0.2=
3.6÷0.12=
0.96÷0.2=
10.5×0.4=
0.54÷0.6=
0.61+0.39=
4.08÷0.4=
0.8×0.11=
0.72+12.8=
5.6÷0.01=
0.75×100=
12.2÷0.2=
0.02×0.5=
0.75÷0.25=
1.75+32.5=
1.02×0.2=
0.26×0.3=
8.4×0.02=
0.8×0.05=
12.6÷0.03=
8.71÷0.1=
0.8×0.13=
8.08÷0.4=
3.27+0.63=
5.02×0.3=
0.7÷0.35=
0.72÷1.44=
0.48÷0.04=
1.25÷2.5=
0.32÷0.8=
12.25÷0.5=
73.5×0.1=
46.5+52.5=
0.45×102=
2.64+3.85+1.54=
4.2÷0.7÷6=
0.4×8.6×25=
0.27÷0.3=
0.65×101-0.65=
2.6×7÷2.6×7=
科目:小学数学
来源:同步题
题型:口算题
直接写出下面各题的得数。
(1)1.3+4=
(2)5+2.1=
(3)2.5-1.5=
(4)3.6-2=
(5)3+2.4=
(6)9.9-0.4=
(7)4.9-0.7=
(8)0.2+1.7=
(9)5.6+2=
(10)7.7-0.5=
(11)2.7-0.3=
(12)7.5+0.2=
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!1+2+3+4+5......+99=?_百度知道
1+2+3+4+5......+99=?
..+99=(1+99)*99&#471+2+3+4+5...
小妹妹,题目是不是抄错了,呃?
第一题:对于这些根式,不会有这样的,都是发散的了
这个都是发散的,知道吗?做题目也要思考下,这些都无法解答。
第二题,后面应该改为-2,不然a-b 2≠0没用,而且你求的那个式子不为定值....呃...
第三题,求1/a^3=1/b^4 1/c^5 1/d^6=?
中间那个等号是什么意思?
把等号改成加号,
a 1=m,b...
其他类似问题
为您推荐:
其他3条回答
99×(99+1)÷2=4950
99×(99+1)÷2=4950
首项加末项的和乘项数除以2
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
<meta name="title" content="An inequality: 1/2*3/4*5/6* ... 99/100
An Inequality:
$\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{99}{100} < \frac{1}{10}$
A product of fractions $\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{2n-1}{2n}$ is on the left-hand side of several inequalities: one with a beautiful proof, one that strengthens the former but is virtually impossible to prove, and a third, even stronger, with an elementary proof.
Try your hand with the simplest variation:
$\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{99}{100} \lt\frac{1}{10}.$
Copyright &
Denote the left-hand side of the inequality A:
$\displaystyle A = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots \cdot\frac{99}{100}.$
And introduce its nemesis $B$:
$\displaystyle B = \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\ldots\cdot\frac{98}{99}.$
Factor by factor, the fractions in $B$ exceed those in $A:$
$\displaystyle \frac{2}{3} \gt \frac{1}{2},$ $\displaystyle \frac{4}{5} \gt \frac{3}{4},\ldots,\frac{98}{99} \gt \frac{97}{98},$ $\displaystyle 1 \gt \frac{99}{100}.$
From this it follows that $A \lt B.$ Note that, due to the choice of $B,$ in the product $AB$ most of the terms cancel out: $\displaystyle AB = \frac{1}{100}.$ From here,
$\displaystyle A^{2} \lt
AB = \frac{1}{100},$
which, with one additional step, proves (1).
This proof suggests that (1) is in fact just a special case of a more general inequality
$\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots \cdot\frac{2n-1}{2n} \lt \frac{1}{\sqrt{2n}},$
whose proof is a slight modification of the above with $A$ and $B$ defined as
$\displaystyle A(n) = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots
\cdot\frac{2n-1}{2n},\\
\displaystyle B(n) = \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\ldots \cdot\frac{2n-2}{2n-1}.$
As we shall see shortly, (1) and (2) are quite weak: $A(n)$ has a much better bound, viz.
$\displaystyle A(n) \lt\frac{1}{\sqrt{3n+1}}.$
(3) supplies an edifying curiosity. By itself, it is easily proved by . However, its weakened version
$\displaystyle A(n) \lt\frac{1}{\sqrt{3n}},$
as far as I know, does not submit to an inductive proof. Try it, by all means. (3) and (3') are often quoted as a pair of problems of which the harder one has a simpler proof.
Meanwhile here's a .
Copyright &
To remind,
$\displaystyle A(n) = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots
\cdot\frac{2n-1}{2n}$
and we wish to prove (3): $\displaystyle A(n) \lt\frac{1}{\sqrt{3n+1}}.$ For $n = 1,$ we have
$\displaystyle A(1) = \frac{1}{2} = \frac{1}{\sqrt{3\cdot 1+1}}.$
But already for $n = 2,$
$\displaystyle A(2) = \frac{1}{2}\cdot\frac{3}{4} = \frac{3}{8} \lt\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{3\cdot 2+1}},$
because upon squaring $\displaystyle \frac{9}{64} \lt\frac{1}{7},$ for $7\cdot 9 = 63 \lt 64.$ Thus let's proceed with the inductive step and assume that (3) holds for $n = k:$
$\displaystyle A(k) \lt\frac{1}{\sqrt{3k+1}}.$
We are going to prove that, for $n = k+1,$ (3) also holds
$\displaystyle A(k+1) \lt\frac{1}{\sqrt{3(k+1)+1}} =\frac{1}{\sqrt{3k+4}}.$
Since $\displaystyle A(k+1) = A(k)\cdot\frac{2k+1}{2k+2},$ (4) implies
$\displaystyle A(k+1) \lt\frac{2k+1}{2k+2}\cdot\frac{1}{\sqrt{3k+1}}.$
Now square the right hand side in (6):
$\displaystyle \begin{align}
\left(\frac{2k+1}{2k+2}\cdot\frac{1}{\sqrt{3k+1}}\right)^{2}&= \frac{(2k+1)^{2}}{(2k+2)^{2}(3k+1)}\\
&= \frac{(2k+1)^{2}}{12k^{3} + 28k^{2} + 20k + 4}\\
&= \frac{(2k+1)^{2}}{(12k^{3} + 28k^{2} + 19k + 4) + k}\\
&= \frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4) + k}\\
&\lt\frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4)}\\
&= \frac{1}{3k+4},
\end{align}$
which is exactly the right-hand side of (5) and proves (6).
Curiously, a much weaker $\displaystyle A(n) \lt\frac{1}{\sqrt{n}}$ is still resistant to the inductive argument, whereas a stronger version $\displaystyle A(n) \lt\frac{1}{\sqrt{n + 1}}$ goes through without a hitch.
where mathematical induction applies easily to a stronger inequality and does not seem to work for a weaker one.)
References
A. Engel, , Springer Verlag, 1998, p. 180
D. Fomin,S. Genkin,I. Itenberg, , AMS, 1996, p. 90
S. Savchev, T. Andreescu, , MAA, 2003, p. 51
D. O. Shklyarsky, N. N. Chentsov, I. M. Yaglom, Selected Problems and Theorems of Elementary Mathematics, v 1, Moscow, 1959. (In Russian)
Copyright &
Disqus -->
Search by google:

我要回帖

更多关于 1 2 3 4 5 6 7 8 9 99 的文章

 

随机推荐