一直反比例函数y=x分之k的图像与直线y=2x都经过点(a,1),抛物线y 2x=kx²+bx+c经过直线y=-2/3x+3与x轴

知识点梳理
1.的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。&2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。
的性质:1.&y=a{{x}^{2}}(a≠0)的图像是一条,它的对称轴是y轴,顶点是原点(0,0)。(1)&二次函数图像怎么画?作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。(2)&二次函数y={{x}^{2}}与y=-{{x}^{2}}的图像和性质:2.&二次函数y=a{{x}^{2}}+k(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=a{{x}^{2}}的图像形状相同,只是位置不同。函数y=a{{x}^{2}}+k的图像是由抛物线y=a{{x}^{2}}向上(或下)平移|k|个单位得到的。当a>0时,抛物线y=a{{x}^{2}}+k的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。当a<0时,抛物线y=a{{x}^{2}}+k的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。3.&二次函数y=a{{\(x-h\)}^{2}}(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与y=a{{x}^{2}}的图像形状相同,位置不同,函数y=a{{x}^{2}}+bx+c(a≠0)的图像是由抛物线y=a{{x}^{2}}向右(或左)平移|h|个单位得到的。画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。当a>0时,抛物线y=a{{\(x-h\)}^{2}}的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。当a<0时,抛物线y=a{{\(x-h\)}^{2}}的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=0。4.&二次函数y=a{{\(x-h\)}^{2}}+k(a≠0)的图像是一条抛物线,它的对称轴是直线x=h,顶点坐标是(h,k),是由抛物线y=a{{x}^{2}}向右(或左)平移|k|个单位,再向上(下)平移|k|个单位得到的。当a>0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=k。当a<0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=k。5.&二次函数的图像的画法:(1)&描点法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式。b.&确定抛物线的开口方向、对称轴和顶点坐标。c.&在对称轴两侧,以顶点为中心,左右对称描点画图。(2)&平移法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式,确定其顶点(h,k)。b.&作出函数y=a{{x}^{2}}的图像。c.&将函数y=a{{x}^{2}}的图像平移,使其顶点平移到(h,k)。
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“方程x2+2x-1=0的根可看出是函数y=x+2与y=的图象...”,相似的试题还有:
方程x2+2x-1=0的根可看出是函数y=x+2与y=的图象交点的横坐标,用此方法可推断方程x3+x-1=0的实根x所在范围为()
方程x2+2x-1=0的根可看出是函数y=x+2与y=的图象交点的横坐标,用此方法可推断方程x3+x-1=0的实根x所在范围为()
方程x2+2x-1=0的根可看出是函数y=x+2与y=的图象交点的横坐标,用此方法可推断方程x3+x-1=0的实根x所在范围为()已知反比例函数y=k/x与一次函数y=ax+b的图像都经过点P(2,-1),且当x=1时,这两个函数值互为负倒数.求这两个函数的关系式.
都经过点P(2,-1) 那么代入反比例函数中得y=-2/x 代入一元函数中得-1=2a+b 当x=1时 反比例函数y=-2 互为负倒数为1/2 1/2=a+b 解得a=-3/2 b=2反比例函数y=-2/x 一元函数y=-3/2x+2
为您推荐:
其他类似问题
扫描下载二维码如图,已知反比例函数y=x/k(k&0)的图像经过点A(-根号下3,m),过点A作AB垂直x轴于点B,且三角形的面积为_百度知道
如图,已知反比例函数y=x/k(k&0)的图像经过点A(-根号下3,m),过点A作AB垂直x轴于点B,且三角形的面积为
过点A的直线与反比例函数y=k&#47已知反比例函数y=k&#47.设点P的横坐标为t;x的图像交于另一点P,与x轴的正半轴交于点D,并求自变量t的取值范围,△AOP的面积为S,m) 过点A作AB垂直于X轴于点B 且三角形的面积为根号3 求k和m的值 若一次函数y=ax+b的图像经过点A;x的图象经A(-根号3,并且与x轴相交于点C,求∠ABC的度数,求S关于t的函数关系式
提问者采纳
2 * xy (x;x 在点A的切线, m = 2y = ax+b 为 y = -2sqrt(3)&#47,y为A点坐标)所以xy = -2sqrt(3) (根号)k = -2sqrt(3)三角形的面积为根号3=1&#47,所以a = sqrt(3)/3
sqrt是什么,没学过诶
其他类似问题
为您推荐:
其他1条回答
#65279;-AB²xk=xy=-2√32;(1)求k和m的值.过A点的直线y=ax+b与x轴交与c点 且∠ACO=30° 求此直线的解析式解,AB垂直X轴于点B∴AC=2AB=2×2=4
则BC&#178,2)∴2=-√3a+b
0=√3a+b解得,0)∴C点坐标;=12∴BC=2√3∵B(-√3,0)AB=m;2=√3m=2代入y=k/-2&#178、∵∠ACO=30°;=4&#178:b=1
a=-√3&#47,BO=|-√3|=√3∴S=m*√3/=AC&#178:(1)∵A(-√3。2:C(√3,0)∵y=ax+b经过A点(-√3;3∴y=(-√3&#47,m)∴B(-√3
反比例函数的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于..
在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
题型:解答题难度:中档来源:不详
(1)当k=-2时,A(1,-2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=mx,代入A(1,-2)得:-2=m1,解得:m=-2,∴反比例函数的解析式为:y=-2x;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x-1)=k(x+12)2-54k,对称轴为:直线x=-12,要使二次函数y=k(x2+x-1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<-12时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<-12;(3)由(2)可得:Q(-12,-54k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ=CQ2+OC2=14+2516k2,∵OA=AD2+OD2=1+k2,∴14+2516k2=1+k2,解得:k=±233.
马上分享给同学
据魔方格专家权威分析,试题“在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“在平面直角坐标系内,反比例函数和二次函数y=k(x2+x-1)的图象交于..”考查相似的试题有:
5025675478098403819582250257483303

我要回帖

更多关于 抛物线y 2x 的文章

 

随机推荐