场效应治疗仪管功放的音色 管用不

UPS上的功放管irfw能不能用再大一点的场效应管替换或者再并联一个3205功率能增大一倍吗?
UPS上的功放管irfw能不能用再大一点的场效应管替换或者再并联一个3205功率能增大一倍吗?
用换变压器吧!有一个老式500wUPS,一样的功率可是个头比这个大一倍还多可以用它替换吗?功率会增大吗?
不能并联!也没有必要并联!1.大功率场效应管的栅极电容很大,特别是IRF3205,并联后可能导致驱动电路负荷加重而无法工作2.UPS的功率不只是和功率管有关,还和变压器有关,如果是高频逆变器,还和后级高压开关三极管的功率有关,单纯改变功率管功率可能没有太大意义!3.老式UPS不能换,你说的个头大很多,估计是工频UPS,工频UPS的开关管的开关速度是不能和现在的高频比,而且变压器也有很大不同,一个是低频铁心(很笨重),另一个是高频磁芯,没有可比性!补充:呵呵,既然是这样,那您可以一试,变压器也可以换!不过您说的高频变压器比工频的小,那就不敢苟同了,高频变压器功率密度高,体积一般较小,而且重量较轻!继续补充:寻找电流检测电路,找到比较阈值电压提供处,将调节值提高,那个地方可能是一个可调电阻(蓝色那种),也有可能是固定电阻构成的,要仔细找一下!~祝你成功!!
等待您来回答
家用电器领域专家您当前的位置:&>&&>&
用场效应管做有胆味的功率放大器
摘要:用场效应晶体管设计出有胆味的音频功率放大器。前级采用单管、甲类,后级采用甲乙类推挽放大技术。实验证明差分放大器使用的对管的一致性与整机的失真程度密切相关。从听音效果来看,末级电流200mA是理想值。
前后级间耦合电容对听音影响较大,要求质量高些。
对于音频功率放大器而言,最好听的莫过于甲类放大器。根据频率分析的结果,由集成运算放大器构成的前级声音单薄、缺乏活力。所以,可不可以前级采用单管甲类放大器,后级采用甲乙类功率放大器?这样既兼顾听音需要,又兼顾效率的需要。目前,电子管音频功率放大器仍然占据着音响器材高端市场。能不能用场效应晶体管(FET),实现电子管放大器那样的醇厚悠长的声音呢?笔者在晶体管功率放大器打摩的基础之上,做出以FET为基础的放大器,取得了有胆味的音乐效果。
1 以场效应晶体管为基本元件的放大器优势明显
就目前在放大器中使用的3种元件而言,晶体管的输入阻抗太低(大约1
k左右),电子管的输入阻抗很高,但输出阻抗也高,为此,还要增加一个输出变压器。使体积较大,耗电也大。所以说两者都不是理想的输出管。总体来看,场效应管具有很高的输入阻抗,也能输出大电流,很适合应用在单端A类放大器中。中频饱满,细腻流畅,弹性十足。用场效应管制作的放大器能产生震撼人心的低频轰炸声。
1.1 失真低
场效应管的失真度低于晶体管,比胆管略大一些。且多为偶次谐波失真,反使听感更好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好的表现。
场效应管的跨导的线性较好。线性区域宽广,与电子管的传输特性十分相似。较好的线性就意味着有较低的失真。
1.2 噪音低
场效应管的噪声是非常低的,噪声系数可以做到1 dB以下。以2SK30为例,在VDS=15 V,VGS=0V,RG=100 k&O,f=120
Hz测试条件下,噪声系数的典型值是0.5 dB。噪声系数的定义是系统输入信号的信噪比除以系统输出信号的信噪比,用分贝表示:
NF=20*log([Si/Ni]/[So/No])
Si=输入信号的功率
So=输出信号的功率
Ni=输入噪声功率
No=输出噪声功率
1.3 稳定性高
我们知道,甲类功放热效率低,产生的热量占整个消耗的功率百分之七十以上。电路的热稳定性受温度影响较为明显。如果电路的热稳定性差,会导致听音效果不正常。这使得大多数音响发烧友望甲却步。影响电路稳定性的主要环节是放大电路的电流放大部分,也叫输出级。双极型晶体管集电极电流具有正的温度系数,即他的集电极电流会随着温度的升高而升高。场效应管恰恰相反,具有负的温度系数,即
他的漏极电流随其结温的升高而下降。推动级及输出级用双极型晶体管就要用到温度补偿电路,才能保证输出晶体管的静态工作点不随环境温度的变化而变化。而用场效应晶体管就可以省去温度补偿电路,从而大大地提高放大器的稳定性。
2 以场效应晶体管为基本元件的放大器的电路结构
2.1 前级的构成
场效应管单管甲类前级放大器见图1。Tn源极电位实测为0.5 V,漏极电位为5.0 V,漏极电流IDSS等于1.25
mA。根据2SK30AMT出厂说明书载明的相关内容,该工作点的线性最好。
该级放大器放大倍数依据公式Au=-gmRf3计算,式中gm&&场效应管的跨导。
2SK30AMT在VDs=10 V,VGS=0 V时的最小跨导gm=1.2ms。那么该级放大器放大倍数为6.72。
音量调节通过进阶开关加11个固定电阻进行,每个电阻10k。这样做的好处是既经济,质量又好。音量调节实为10级,听音效果十分理想。
第二级放大电路作源极输出器,旨在匹配电路,提高前级的负载能力,放大倍数近似为1。静态工作点仍然十分重要,Tf2源极电位实测为5.5
V,位于电源电压的中值附近,很好。在该级上,同样可算出漏极电流2.75 mA,也要满足甲类放大器对静态的要求。
隔直电容C17,C18对音质的好坏影响较大,选用进口名牌WIMA电容。
2.2 后级放大电路仍采用推挽式、甲乙类放大器
对称放大电路所用元件要检测其静态特性。功率放大电路如图2所示。
以Tm1和Tm3为例,其检测参数主要是IDDS,即当VGS=0时的漏极电流。在VGS=0时,测出IDDS,其值相近为宜。同样地,Tm2和Tm4也要与Tm1或Tm3静态值相差无几,或相近。只有这4个场效应管静态值大致相同,才有可能做出优质的放大器来。成批生产的放大器价格很高,正是这些电路中使用的元件匹配困难,造成制造成本高,制约了该技术的推广应用。
这4个场效应晶体管匹配至关重要,只有它们的静态特性一致,才能保证后面大功率放大元件工作的准确和安全。推动级和输出级对应对管的互补性要求与差动放大器完全相同,这里不再赘述,请读者参考前文所述内容。
2.3 整机的调试
末级(Tm9和Tm10)电流的静态值的设置对听音效果影响较大,大一些,声音温暖,柔和一些,但效率降低。过大,闹不好会损坏功率器件。调节Rm22能改变Tm7和Tm8的栅极电位,进而影响到Tm9和Tm10的栅极电位及末级电流。最初通电调试时,最好先从电路上取下Tm9和Tm10两只大功率场效应晶体管。调节Rm22时,眼睛紧紧盯住中点电位(VB),如果VB大于0
V,则增加Rm22,反之,则减小Rm22。调好中点电位后,再安装上Tm9和Tm10两只大功率场效应晶体管,以确保大功率元件的安全。
Rm3和Rm4两端的电压降以2 V为好。太高会造成后级(Tm9和Tm10)静态电流过大;太低会使声音失真明最。调节Rr4能调节这个电压。
可穿戴设备被誉为下一个改变世界的新贵,在2014年呈现出一种百花齐放的状态…
() () () () () () () () ()您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
V-MOS 场效应管单端A 类功放的制作.pdf3页
本文档一共被下载:
次 ,您可免费全文在线阅读后下载本文档
文档加载中...广告还剩秒
需要金币:100 &&
你可能关注的文档:
··········
··········
设计与制作
V-MOS场效应管
单端A类功放的制作
异彩,让乐声更传神,让音色更完美!
1 单端A类放大器性能刍议
各类音频放大器具有各自的优点及属性,也各有
无论是普通音响,还是电脑多媒体音响,功率 不足之处,而场效应管放大器主流兼具晶体管和电子
管两者的优势,同时还具备两者所没有的优势,在电
放大器依然是音频能量扩大推动扬声器出声不可或
缺的终端,各类放大器均能较好地实现这一功能, 路程式上,大量实践证明,单端 A 类功放是以效率
但是现代人们对音响
客观的技术因素, 如频率响应、 换音品的典范,具有无与伦比的音乐魅力!
失真度、信噪比等
主观的艺术魅力,如声 放大器按工作状态的不同,一般可分为 3 类:
底是否醇厚、堂音是否丰富、听感是否顺耳等
的苛 A 类放大器又称甲类放大器、AB 类放大器又称甲
求愈来愈高,不少“金耳朵”能够听出歌手的齿音、 乙类放大器、B 类放大器又称乙类放大器。在这 3
口角以及身临其境直逼现场的感觉,因此对音频放 类放大器中,线性昀好,音色昀靓的是 A 类放大器。
大器重放音色
建立在良好音质基础之上的意义
也 而单端 A 类放大器与推挽放大器在设计上的不同
寄予更大的企求,努力以特色音响塑造迷人的音乐 之处,就是使用一个放大器件来放大整个音乐波
氛围! 形;而推挽设计采用两个放大器件,分别放大信
音频放大器按所用放大器件可分为电子管放大 号的正负半周,包括一些推挽甲类放大器。单端
A 类放大与推挽放大不同的显著特征就是放大后的
器、晶体管放大器、集成电路放大器、场效应管放
大器以及由上述所用器件两种或两种以上组成的混 音乐波形是一个完整的与输入波形十分相似的波
合放大器,各类放大器电路及所用元
正在加载中,请稍后...场效应管特性及单端甲类功放制作
您好,欢迎来到61ic!
&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&&.&
您现在的位置:&&>>&&>>&&>>&正文
场效应管特性及单端甲类功放制作
&&&热&&&&&★★★
【字体: 】
场效应管特性及单端甲类功放制作
作者:&&&&文章来源:&&&&点击数:&&&&更新时间:&&&&
场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。
一、场效应管的特性场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。
高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。
场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。
场效应管具有更好的热稳定性和较大的动态范围。
场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。
普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。
场效应管的防辐射能力比普通晶体管提高10倍左右。
转换速率快,高频特性好。
场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。
场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受爱乐人士青睐,因而在音响领域有着广阔的应用前景。VMOS管和一般MOS管一样,也可分为N型沟道和P型沟道两种、增强型和耗尽型四类,分类特征与一般的MOS管相同。VMOS场效应管还有以下特点。
输入阻抗高。由于栅源之间是SiO2层,栅源之间的直流电阻基本上就是SiO2绝缘电阻,一般达100MΩ左右,交流输入阻抗基本上就是输入电容的容抗。
驱动电流小。由于输入阻抗高,VMOS管是一种压控器件,一般有电压就可以驱动,所需的驱动电流极小。
跨导的线性较好。具有较大的线性放大区域,与电子管的传输特性十分相似。较好的线性就意味着有较低的失真,尤其是具有负的电流温度系数(即在栅极与源极之间电压不变的情况下,导通电流会随管温升高而减小),故不存在二次击穿所引起的管子损坏现象。因此,VMOS管的并联得到了广泛的应用。
结电容无变容效应。VMOS管的结电容不随结电压而变化,无一般晶体管结电容的变容效应,可避免由变容效应招致的失真。
频率特性好。VMOS场效应管的多数载流子运动属于漂移运动,且漂移距离仅1~1.5um,不受晶体管那样的少数载流子基区过渡时间限制,故功率增益随频率变化极小,频率特性好。
开关速度快。由于没有少数载流子的存储延迟时间,VMOS场效应管的开关速度快,可在20ns内开启或关断几十A 电流。
二、场效应管的主要参数及选用为了正确安全运用场效应管,防止静电、误操作或储存不当而损坏场效应管,必须对场效应管主要参数有所了解和掌握。场效应管的参数多达几十种,现将主要参数及含义列于表1,作为参考。
表1 场效应管主要参数及含义
栅源之间的SiO2层很薄,耐压一般只有30~40V
VGS=0,源漏反向漏电流达10uA时的VDS值
在源极接地情况下,为使漏源电流输出为零时的栅源电压
当IDS达到1mA时,栅源之间的电压
栅一沟道结施加反向电压下的反向电流,结型管为nA级,MOS管为pA级
饱和漏源电流
零偏压VGS=0时的漏电流
栅源绝缘电阻,栅一沟道在反偏压下的电阻,结型管为100M Ω,MOS管为10000MΩ以上
漏极特性曲线斜率的导数,即1/RDS=△ID/△VDS
表示栅极电压对漏极电流的控制能力
噪声是管子内载流子不规则运动引起的,场效应管要比晶体管小得多,NF愈小表示管子噪声愈小
输入电容,越小越好,减小失真,有利频率特性提高
输出电容,越小越好,减小失真,有利频率特性提高
反馈电容,越小越好,减小失真,有利频率特性提高场效应管的选用应注意以下几点。
场效应管的ID的参数按电路要求选取,能满足功耗要求并略有余量即可,不要认为越大越好,ID越大,CGS也越大,对电路的高频响应及失真不利,如ID为2A的管子,CGS约为80pF;ID为10A的管子,CGS约为1000pF。使用的可靠性可通过合理的散热设计来保证。
选用VMOS管的源漏极耐压BVDSS不要过高,能达到要求即可。因为BVDSS大的管子饱和压降也大,会影响效率。结型场效应管则要尽可能高些,因为他们本来就不高,一般BVDSS为30~50V,BVGSS为20V。
VMOS管的BVGSS尽可能高些,因为VMOS管子栅极很娇气,很容易被击穿,储存或操作要慎之又慎,防止带静电的物体接触管脚。在储存中要将引出脚短路,并用金属盒屏蔽包装,以防止外来感应电势将栅极击穿,尤其要注意不能将管子放入塑料盒子或塑料袋中。为了防止栅极感应击穿,在安装调试中要求一切仪器仪表、电烙铁、电路板以及人体等都必须具有良好的接地效果,在管子接入电路之前,管子的全部引脚都必须保持短接状态,焊接完毕后方可把短接材料拆除。
配对管要求用同厂同批号的,这样参数一致性好。尽量选用孪生配对管,使管子的夹断电压和跨导尽可能保持一致,使配对误差分别小于3%和5%。
尽可能选用音响专用管,这样更能适合音频放大电路的要求。
在安装场效应管时,位置要避免靠近发热元件。为了防止管子振动,要将管子紧固起来,管脚引线在弯曲时,应当大于根部距离5mm处进行弯曲,以防止弯曲时拆断管脚或引起漏气而损坏管子。管子要有良好的散热条件,必须配置足够的散热器,保证管子温度不超过额定值,确保长期稳定可靠工作。三、音频放大器艺术魅力及评价音频放大器按所用放大器件可分为电子管放大器、晶体管放大器、集成电路放大器、场效应管放大器以及由上述所用器件两种或两种以上组成的混合放大器,各类放大器电路及所用元器件也是五花八门、千变万化,由此对音源的重放音质又各具特色,很难说哪一种放大器能以偏概全、技压群芳成为万能放大器。电子管放大器由于空间电荷的传输时滞作用,重放音色温暖柔和,尤其是弦乐人声,表现为醇美剔透,耐人寻味。晶体管以及集成电路放大器具有犀利的分析力、宽阔的频响和强劲的动态,具有朝气蓬勃、催人奋进的感召力。场效应管放大器以及混合器件放大器,力图综合电子管和晶体管音频特性,开创异彩,让乐声更传神,让音色更完美。近些年来,随着电子电脑技术的不断发展,各种电子合成器、各种音频效果器和胆音效果器软件以及虚拟扬声器技术层出不穷。这使得音频放大器硬件的发展和普及远远赶不上软件的速度,在精确度上硬件往往也赶不上软件,如电脑模拟3D效果逼真度大大超过真实3D效果,不受听音室的空间以及声源合成的限制,同时也节省投入硬件的开支。绿色音响、双料发烧―― 电脑音响很有可能会成为未来音响的主流,硬件不行软件来,实行软硬兼施,功能强悍,集中体现了高效、便捷、神奇以及经济的特点。如在电脑中设置虚拟光驱,每次播放乐曲时,就不必启动物理光驱,这样不仅减少等待曲目时间及物理光驱的磨损,更重要的是消除了物理光驱的噪声,实现高保真放音。再如,胆管功放放音柔和耐听,而制作成本不薄,并且取得靓音的要件比较多,而通过胆音效果器软件,可为我们在电脑中造就一个“软胆”,就可以模拟出胆机的音色。目前电脑多媒体音响正处于进阶时期,并与电视也架起了沟通的桥梁,其前景是十分灿烂诱人的!电脑以及音响发烧友,是一个不惜时间和精力,积极探索追求音质的特殊层面,将继续担起一份爱乐责任,生活中多一首甜美的歌声,就少一幕苦涩的纷争。无论是普通音响,还是电脑多媒体音响,功率放大器依然是音频能量扩大推动扬声器出声不可或缺的终端,各类放大器均能较好地实现这一功能。不过现代人们对音响(技术因素为主,如频率响应、失真度、信噪比等)和音乐(艺术魅力为主,如声底是否醇厚、堂音是否丰富、听感是否顺耳等)的苛求愈来愈高,不少“金耳朵”能够听出歌手的齿音、口角以及身临其境、直逼现场的感觉,因此对音频放大器重放音色也寄予更大的要求,努力以特色音响塑造迷人的音乐氛围。各类音频放大器具有各自的优点及属性,也各有其不足之处,而场效应管放大器主流兼具晶体管和电子管两者的优势,同时还具备两者所没有的优势。在电路程式上,大量实践证明,单端甲类功放是以效率换音质的典范,具有无与伦比的音乐魅力。不少发烧友从单纯追求音质出发,反复制作功放,反复对比听音,最终为A类所动,似乎觉得没有A类的音乐犹如孤独的音乐。
四、单端甲类放大器性能刍议放大器按工作状态的不同一般可分为3类:①A类放大器,又称为甲类放大器;② AB类放大器,又称为甲乙类放大器;③B类放大器,又称为乙类放大器。在这3类放大器中,线性最好,音色最靓的是A类放大器,而单端甲类放大器与推挽放大器在设计上一个不同之处,就是使用一个放大器件来放大整个音乐波形。而推挽设计采用两个放大器件,分别放大信号的正负半周,包括一些推挽甲类放大器。单端甲类放大与推挽放大一个显著的不同特征就是放大后的音乐波形是一个完整的与输入波形十分相似的波形,没有推挽放大正负波形的交越失真,尽管推挽放大采用配对精度高达2% 误差甚至更小误差的孪生管,但这只是一个片面性的数字描述,事实上正负波形不可能交接得好,加之电路元器件非线性引起的相移存在,交越失真将进一步增大,当然失真与音色在一定程度上并不对立,这要看设计放大器的用途和目标,并非推挽放大就此罢休,况且推挽放大器中,由于存在多次谐波,虽然原配正负波形交接不好,但谐波交接不能否定,只是与单端波形相比难以抗衡。关于推挽放大谐波尤其是偶次谐波会相互抵消这一说法,笔者不予完全认同,只有相移失真达180°或360°等谐波成分才会相互抵消。如推挽功放中的直流高压中的交流纹波经推挽变压器中心抽头平均分成两路,由于两臂线圈极性相反,相差180°,交流纹波几乎被完全抵消。单端甲类放大器具有最自然的音乐性,其不对称性与空气受压缩与扩展的特性相似。由于组成空气含量最多的为非极性分子氮气(N2),约占78%,因此空气是压强能变得非常高的“单端无极”媒介,使得单端A类乐声最传神,音色最醇美。
五、VMOS场效应管单端甲类功放的制作设计放大器有两个基本原则:一是简单,二是线性。而能做到最简单的放大器线路就是单端甲类了,简单不是单端甲类放大使用的唯一理由,是因为单端甲类具有最迷人的音乐感。在A类、B类、AB类线路程式中,线性最好的是甲类,而不足之处就是效率是最低的,约为20%,是以效率换音质的典范。在单端甲类放大电路中使用的放大器件也有一番讲究。晶体管具有太低的输入阻抗,电子管的输入阻抗很高,但其输出阻抗也比较高,从原理上讲电子管并不适合做功放输出管,因此唯一的选择是场效应管。场效应管具有很高的输入阻抗和跨导,也能输出很大的电流,很适合应用在单端甲类放大器中。而在众多的场效应管中,用VMOS场效应管制作的单端甲类放大器,更领风骚,魅力独特。高端的钛膜声,中频饱满细腻流畅的磁性声,弹性十足震撼人心的低频轰炸声,别有一番霸道气势。在一般的设计中场效应管特长没有得到充分发挥,甚至认为声音偏冷、偏暗,其实这不是场效应管的原因。其声音不好,一方面是人们使用它直接代换晶体管,晶体管的线路是不能发挥出场效应管的特性的;另一方面,这些电路通常使用AB类的偏置。根据场效应管转移特性,在低偏置时具有严重的非线性,带来严重的失真,解决的办法是让其工作在A类状态,特别是单端A类,瞬态特性极佳,音质纯美,偶次谐波丰富,音色悦耳动听,更具有电子管的醇美音色。1.电路原理 单端甲类场效应管功放电路五花八门,各有特色,本机电路如附图所示。为了获得靓丽的音色,采取简洁至上原则,多一个元件多一分失真,多一条线路多一分失真。现将电路原理作一简述,以抛砖引玉,其主要特点有以下一些。(1)为了避免普通音量电位器传输失真,非稳态接触电阻、摩擦噪声和操作易感疲惫之嫌,本机采用音响型极低噪声VMOS场效应管IRFD113作指触音量控制。其相对于键控音量电路又减少了一些元件,并加以屏蔽,使音量控制部分的噪声系数达到1dB以下(VMOS场效应管噪声系数在0.5dB左右),敢与高档真空步进电位器或无源变压器电位器抗衡,手感更贴切人性化。VMOS场效应管内阻高,属电压控制器件,在栅极及源极之间连接充电电容,由于栅漏电流极小,电容电压在很长一段时间内能基本保持不变。当管子工作于可调电阻区时,其漏源极电阻将受到栅源极电压即电容的电压所控制,这时管子相当于压控可变电阻,当指触(依手指电阻导电)开关S1闭合,即向电容充电,当指触开关S2闭合,即将电容放电,从而达到以电压控制漏源极电阻的目的。将其按入音响设备中,即可调节音量的大小。S1和S2可用薄银片或薄铜片制作,间距2mm左右,待调试后确定,音量增减量设置在±2dB左右。(2)由IRF510作电压放大,放大后的音频电压直耦至上臂管IRF150进行扩流并作源极输出,下臂管IRF150构成恒流源,直流为通路,交流为开路,使交流信号通过输出电容推动扬声器。(3)由于VMOS场效应管具有负的电流温度系数,即在栅极与源极之间电压不变的情况下,导通电流会随管温升高而减小,从而避免管子二次击穿。但管子温度的变化与电流的变化速率相差甚远,对此为了防止负温度系数惯性延迟而影响工作状态,本机在IRF510阴极串上一只适当阻值的正温度系数补偿电阻(100Ω/2W ),以起到缓冲作用。其原理是当没有阴极电阻时,IRF510栅源电压是恒定的固定偏压,与管子电流变化无关,加上阴极电阻后,当管流减小时,源极电位也降低。而相对于栅极来说,栅极电位便提高了,这样栅源电压就增大了,此时管子电流便增加了,从而适量抵消负温度系数产生的电流陡坡现象。阴极电阻阻值大小决定这种作用的大小,从而起到适当的缓冲作用,此电阻并不是电流负反馈电阻。(4)本机经考虑后不采用OCL即无输出电容电路,一则是为了扬声器安全,二则考虑零点失调电压尤其是动态时对扬声器音圈产生直流偏磁位移,直接影响扬声器性能,从而劣化音质。由于大容量输出电容多为电解电容,一般认为噪声较大,而实际上这是一个信噪比的问题,关键是应用在什么电路,如将电解电容用在动圈唱头放大电路,就不合适,动圈唱头信号只有2mV左右,要求放大电路具有较高的信噪比,用电解电容信噪比就低。而将电解电容用于功放末级输出,情况就不一样了,信噪比相对低电平电路会有大幅度提高。另外一点,电解电容在使用前最好进行通电老化,并择优选用,然后上机后再进行充分煲机,这样可降低噪声系数。没有噪声的元器件是没有的,关键要合理运用,并采取措施,以达到必要的目的。本机为了减小输出电解电容由于感抗对高频的影响,用3只电解电容并联以减小感抗,并将扬声器的负极接电解电容的负极,以钳位电解电容漏电流产生的音圈偏磁位移。(5)本机场效应管偏压由电源模块LM7812提供,功放电源不采取稳压电源供电,以避免限制乐声的低频力度和动态,即降低电压换电流,降低功率换音质。
2.制作调试制作本机时,两声道要用独立电源供电,以提高分离度,减少干扰,并增强各声道工作稳定性。本机后级由于采用直耦电路,所以工作点会相互牵制,需反复调试几次才能完成,IRF510工作电流约为20mA,上下两管IRF150(配对)工作电流约为1.5A,栅源电压约为3.8V,反复调节这两级偏压电阻,使中点电压为l8V。不同产地、不同批次管子会有所出入,数据仅作参考,最好使用示波器将其调节为A类最佳工作状态。否则,由于管子的离散性,即使工作点按手册或特性曲线给出的参数调节工作点,也未必工作在最佳的A类状态。本机可代用的场效应管较多,不同管子参数、特性及音色也有差异。表2列出几种常用管子参数供参考。本机其他元器件选用可参考有关资料,在此不再赘述。
表2 几种常用场效应管主要参数
源漏耐压/V
源漏电流/A
耗散功率/W
低噪声放大
低噪声差分放大
低噪声放大
高频功率放大
互补2SJ162
高频功率放大
互补2SJ118
高频功率放大
互补2SJ115
高频功率放大
互补IRF9130
高频功率放大
互补IRF9540
高频功率放大
互补IRF9150单端电路是耗电大户,本机输出管单管热损耗约30W ,提高工作电压还可增加输出功率,但热损耗也相应增加。因此,必须将管子装在一块热阻不大于1kΩ/W的散热器上,规格不小于200mm×200mm×6mm,将管子用硅脂涂抹后紧固在适当的位置上。3.参数指标实测技术指标见表3。
表3 实测技术指标
输入灵敏度
最大输出功率
8W (8 Ω,THD+N=10%,1kHz正弦波信号)
最大音乐输出功率
10W (8 Ω,THD +N&211%,1kHz正弦波信号)
3.8% (1W/8Ω,1kHz)
88dB (不计权)
18Hz~165kHZ4.测评试听本机测评试听搭配器材如下:(1)飞利浦(Philips)LHH-500型顶级CD唱机;(2) 自制直热管3A5前级;(3) 意大利傲霸卡丝音箱;(4) 美国音乐丝带Super Flatine Cable音箱线;(5) 高度风Ortofon AC-5000 8N无氧铜信号线;(6) 日立4N单品铜3×3.5mm 硅橡胶电源线;(7) G&W TW-05D型音频专用电源净化器。用正版雨果CD进行试音时,声场宽阔,动态特别好。音像定位、解析力佳,低频结实,控制力好。音质非常纯净,让人过耳难忘!
文章录入:admin&&&&责任编辑:admin&
上一篇文章: 下一篇文章:
【】【】【】【】【】
  网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

我要回帖

更多关于 鼠标不管用 的文章

 

随机推荐