点B是抛物线y 2x 2上两点=x^2-2x+1上一点,且点B的纵坐标为2,则点B的横坐标为??

欢迎来到21世纪教育网题库中心!
如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
答案(1)y=﹣(x+2)2;(2)①(,3);②S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).
解析试题分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式.(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标.②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.试题解析:解:(1)∵直线AB的解析式为y=2x+4,∴令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2.∵点C(0,﹣4)在抛物线上,∴﹣4=4a,解得a=﹣1.∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点.∴△BAO∽△BFE.∴,即,可得:BE=2EF.如答图1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BHoBF,EF2=FHoBF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=.∴E(,3).②假设存在.联立抛物线y=﹣(x+2)2与直线y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线y=﹣(x﹣m)2+2m+4与直线y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|xG|﹣|xE|=2.如答图2,S△EFG=S△BFG﹣S△BEF=BFo|xG|﹣BF|xE|=BFo(|xG|﹣|xE|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).考点:1.二次函数综合题;2.线动平移问题;3.待定系数法的应用;4.一点的坐标与方程的关系;5.二次函数的性质;6.相似三角形的性质;7.解一元二次方程;8.分类思想、转换思想和数形结合思想的应用.扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
(2014o拱墅区一模)如图,点P是直线:y=2x-2上的一点,过点P作直线m,使直线m与抛物线y=x2有两个交点,设这两个交点为A、B:(1)如果直线m的解析式为y=x+2,直接写出A、B的坐标;(2)如果已知P点的坐标为(2,2),点A、B满足PA=AB,试求直线m的解析式;(3)设直线与y轴的交点为C,如果已知∠AOB=90°且∠BPC=∠OCP,求点P的坐标.
qixiqi0002A
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
(1)∵直线m解析式为:y=x+2与抛物线y=x2有两个交点,设这两个交点为A、B:2解得:1=-1y1=1,2=2y2=4.∴A(2,4)、B(-1,1);(2)解法一:设A(m,m2)、B(a,b),如图1:过A作x轴垂线,过P、B作y轴垂线,交于点F,∵PA=AB,在△ABF和△APE中,
为您推荐:
(1)将两函数解析式联立求出其交点坐标即可;(2)设A(m,m2)、B(a,b),进而得出B的横坐标a=2m-2,纵坐标b=m2-(2-m2)=2m2-2,即可得出A点坐标,进而利用待定系数法求一次函数解析式即可;(3)根据题意得出△AEO∽△OFB,则=,进而得出x=2+4b2由x1x2=-1,再利用勾股定理得出a的值,求出即可.
本题考点:
二次函数综合题.
考点点评:
此题主要考查了全等三角形的判定与性质和勾股定理以及相似三角形的判定与性质以及二次函数综合等知识,利用数形结合得出D点坐标是解题关键.
扫描下载二维码当前位置:
>>>如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,..
如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,C是抛物线上一点,且点C的横坐标为1,AC=310.(1)求抛物线的函数关系式;(2)若D是抛物线上一点,直线BD经过第一、二、四象限,且原点O到直线BD的距离为855,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使得以A、B、P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.
题型:解答题难度:中档来源:不详
(1)过点C作CE⊥x轴于点E,如图,∵抛物线上一点C的横坐标为1,∴C(1,n-2m+2),其中n-2m+2>0,OE=1,CE=n-2m+2;∵抛物线的顶点A在x轴负半轴上,∴A(m,0),△=4m2-4(n+1)=0,得n=m2-1①,其中m<0,OA=-m,AE=OE+OA=1-m,在Rt△ACE中,AC=310,∵AE2+CE2=AC2,∴(1-m)2+(n-2m+2)2=(310)2②,把①代入②得[(m-1)2]2+(m-1)2-90=0,∴[(m-1)2+10][(m-1)2-9]=0,∴(m-1)2-9=0∴m1=4,m2=-2,∵m<0,∴m=-2.把m=-2代入①,得n=4-1=3,∴抛物线的关系式为y=x2+4x+4;(2)设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,如图,∵点O到直线DB的距离为855,∴OM=855,而B点坐标为(0,4),∴OB=4,∴BM=OB2-OM2=455;∵OB⊥OF,OM⊥BF,∴△OBM∽△FOM,∴OMBM=OFBO,即OF4=855455,∴OF=8,∴F点坐标为(8,0),设直线DB的解析式为y=kx+b,把F(8,0)、B(0,4)代入得8k+b=0b=4,解得k=-12b=4,∴直线DB的解析式为y=-12x+4,解方程组y=x2+4x+4y=-12x+4得x=0y=4或x=-92y=254,∴D点坐标为(-92,254);(3)存在.理由如下:∵OB=4,OF=8,∴BF=OB2+OF2=45,∵y=(x+2)2,∴A点坐标为(-2,0),∴OA=2,而OB=4,∴AB=OB2+OA2=25∴OA:OB=OB:OF,∴△OAB∽△OBF,∴∠AOB=∠OFB,∴∠ABF=∠ABO+∠OBF=∠OFB+∠OBF=90°,∴△ABF∽△AOB,此时P1在F点位置,符号要求,P1点的坐标为(8,0);当△ABP2∽△BOA时,则BP2:OA=AB:BO,即BP2:2=25:4,∴BP2=5,过P2作P2H⊥x轴于H,如图,∴OH:OF=BP2:BF,即OH:8=5:45,∴OH=2,把x=2代入y=-12x+4得y=-12×2+4=2,∴P2的坐标为(2,2);当△ABP3∽△BOA时,同样得到BP3=5,∴P3A⊥OA,∴P3的横坐标为-2,把x=-2代入y=-12x+4得y=-12×(-2)+4=5,∴P3的坐标为(-2,6);当△ABP4∽△AOB时,则BP4:OB=AB:AO,即BP4:4=25:2,∴BP4=45,过P4作P4Q⊥y轴于Q,如图,易证得△P4QB≌△FOB,∴P4Q=8,把x=-8代入y=-12x+4得y=-12×(-8)+4=8,∴P4的坐标为(-8,8),∴满足条件的P点坐标为(-8,8)、(-2,5)、(2,2)、(8,0).
马上分享给同学
据魔方格专家权威分析,试题“如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,抛物线y=x2-2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,..”考查相似的试题有:
19586550957390598490822795673916609

我要回帖

更多关于 抛物线y 2x 2上两点 的文章

 

随机推荐