为什么在海洋中不太可能找到早于王刚砸两亿审判结果年前的磁场异常带

海洋学2的作业,会的帮看下呗【中国海洋大学吧】_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:171,579贴子:
海洋学2的作业,会的帮看下呗收藏
lz不是本专业的,所以烦请会的吧友帮解答下。1.利用地壳均衡说,如果陆地上一座山峰被侵蚀500m 这座山峰的高度会降低500m吗?2.为什么在海洋中不太可能找到早于2亿的磁场异常带?
登录百度帐号推荐应用板块构造学说的由来和评价(一)
板块构造学说
前面谈到,固定论和活动论(或者说垂直论和水平论)一直是本世纪中争论很激烈的地质课题。固定论长期占据统治地位,被称为传统的观点。60年代开始,活动论兴起并取而代之,板块构造学说就是它的代表。
板块构造学说并不是凭空产生的,它的出现既有历史的根源,又有时代的背景,特别是和科技发展的水平相适应。这里有必要对该学说作一下历史的回顾。
一、大陆漂移说的兴衰
1912年,德国气象学家A.魏格纳()在总结前人有关大陆漂移概念的基础上,提出一种大地构造假说——大陆漂移说,引起全世界科学界的重视。
魏格纳认为:在3亿年前的古生代后期,地球上所有的大陆和岛屿是连在一起的,构成一个庞大的联合古陆,称为泛大陆(Pangea);周围的海洋称为泛大洋(Panthalassa)。从中生代开始,这个泛大陆逐渐分裂、漂移,一直漂移到现在的位置(图9-12)。大西洋、印度洋、北冰洋是在大陆漂移过程中出现的,太平洋是泛大洋的残余。
漂移说认为:较轻的花岗岩质(sial)大陆是在较重的玄武岩质(sima)海底上漂移的,并列举了许多事实来证明这种漂移。如大洋两岸特别是大西洋两岸的轮廓,凹凸相合,只要把南北美洲大陆向东移动,就可以和欧非大陆拼在一起,几乎严丝合缝。又如在为大洋所分割的大陆上,地层、构造、岩相、古生物群、古气候等也都具有相似性和连续性。以古构造而论,如非洲的开普山和南美的布宜诺斯艾利斯山可以连接起来,被看作是同一地质构造的延续。以古气候而论,如在南美洲、非洲、印度、澳大利亚洲都发现有石炭二叠纪的冰川堆积物,说明它们当初是连在一起的,并正好处于极地位置,是以后经过分裂、漂移才形成目前这种分布的形势。诸如此类,例证很多。
漂移说还认为:大陆漂移有两个明显的方向性:一是从两极向赤道的离极运动,是由地球自转所产生的离心力引起的。东西向的阿尔卑斯山脉、喜马拉雅山脉等,就是大陆壳受到从两极向赤道的挤压的结果。一是从东向西的运动,是日月对地球的引力所产生的潮汐(摩擦力)作用引起的。美洲西岸的经向山脉如科迪勒拉山脉和安第斯山脉,就是美洲大陆向西漂移受到硅镁层阻挡,被挤压褶皱形成的;亚洲大陆东缘的岛弧群、小岛,是陆地向西漂移时留下来的残块。
这个学说,在当时有两点引起人们的兴趣。一是地球自转所产生的水平运动对地壳构造形成的主导作用;二是大陆和大洋的位置并不是固定不变的。如李四光在当时也受到此说的影响。但是,大陆漂移的驱动力问题没有得到解决,有人怀疑地球自转离心力和日月潮汐摩擦力是否足以使大陆硅铝层在洋底硅镁层上漂移;此外还有一些问题不能得到很好的解释,如果是硬的硅铝层在较软的硅镁层上发生漂移,为什么硅铝层的前缘褶皱成山而硅镁层的边缘反倒没有褶皱而只拗陷为海沟?如果大陆漂移是在中生代开始的,那么古生代以前的褶皱山脉是怎样形成的?由于许多问题得不到答案,特别是受到固定论者的坚决反对,到了30年代,此一学说便逐渐消沉下去了。
二、海底扩张说的提出
若干世纪以来,地质工作都是局限于大陆上。第二次世界大战后,由于科学技术的发展,特别是因为苏美等国家争夺战略要地和海底资源,各种科学伸入到这片占地球总面积71%的“禁区”,展开了多方面的海洋调查工作,并获得了大量海洋科学的资料。例如,发现或进一步弄清了大洋中脊形态、海底地热流分布异常、海底地磁条带异常、海底地震带及震源分布、岛弧及与其伴生的深海沟、海底年龄及其对称分布、地幔上部的软流圈等等。在这些新资料的基础上,产生了一个崭新的学说——海底扩张说。
(一)地球表面最长的山脉——大洋中脊
大洋中脊,或称洋脊,指海底纵横绵延的山脉,总长度可达65000km,是地球上最长的山脉。其中最典型的为大西洋中脊,它与两侧大陆平行延伸,略呈S形;高出洋底m,洋脊中央常为一深陷裂谷,两侧有一系列阶梯状断层,形成地堑构造(图9-13)。有些海底山脉并不在大洋的中间,一般称为海岭,如沿东经90°的东印度海岭,北冰洋上的罗蒙诺索夫海岭等。又如太平洋东部的海岭,没有明显的中央裂谷,也不甚崎岖,称为太平洋中隆。
根据实地勘测,发现洋脊具有如下地球物理方面的特点:第一,洋脊为高地热流异常区。中央裂谷附近的热流值常是深海盆正常值的2—3倍。第二,重力测量结果,中央裂谷一带常表现为重力负异常区。第三,地震波的研究表明,在洋脊下方的地幔中,波速小于正常值,同时莫霍面不清,地壳有明显变薄的趋势。以上各项地球物理测量说明洋脊下面是软流圈物质上涌的部位,温度较高,密度变小,有部分物质熔融变为岩浆(反映重力值降低,波速降低),洋脊是地热的排泄口(反映热流值较高)。
此外,深潜及海底打捞资料证明,在洋脊大部分地段基岩裸露,主要为玄武岩,没有或只有极薄的深海沉积物,在较深部位的岩石由于地温较高,有不同程度的变质现象。
综上所述,洋脊位于温度较高的地幔软流圈上隆的地段,是岩石圈的巨型张裂谷,是岩浆的涌出口和地热排泄口,也是区域变质发生的地带。
(二)大洋中脊两侧的地质特征
在洋脊两侧人们发现有许多地质现象,特别是地球物理现象表现出一定程度的对称性的特点,引起一些学者的重视和思考。
1.地质现象的对称性&
从大洋中脊向两侧,基岩风化程度有由浅逐渐变深的趋势;同时海底沉积层有由薄变厚的趋势,形成以大洋中脊为中心、两侧地质现象对称的鲜明特点。这种特点应该同大洋中脊及洋壳的形成过程密切相关。
2.海底磁条带的对称排列&
地球磁场的两极能使指南针的两端指向南北,这是尽人皆知的事。但是地球发展过程中磁场的极性特征,可以保存于不同时代的岩石中,则是近年才被揭示出来的。事实证明,从地下溢出的高温熔岩,当其温度下降到居里点(500—450℃)以下,其中矿物内部原子振动量减小,特别是像磁铁矿一类的矿物,其内部原子开始受到地球磁场的控制,按照磁力线的方向发生磁化,使每一块小矿物变成一个极性与地球磁场相平行的小磁石。在外界磁场作用下物质获得磁性,当外界磁场去掉或改变后,又永远保持原来的磁性,这称为剩余磁性。像熔岩在由热变冷的过程中即可获得剩余磁性,这称为热剩余磁性。大部分火成岩具有这种磁性,部分沉积岩也可获得剩余磁性。专门研究岩石中剩余磁性的科学,称为古地磁学。用精密仪器可以测定岩石剩余磁性的方向和大小,并可据以确定古地磁极的位置及强度、追溯地球磁场变化的历史和确定岩石的年代。
从1956年起,科学工作者开始测量海底岩石的磁化强度,并把正、负磁性异常圈定在图上进行研究。从60年代起,就陆续有人发现,在横穿洋脊方向所测得的磁力异常曲线相似,每一侧的正负异常都在另一侧同样的位置出现;同时发现在过去亿万年地球发展过程中,地球磁场南北极曾多次反向,现在的磁场叫正向,与现在磁场方向相反的叫逆向。把所有横剖面上所测得的正负异常连接起来,即可看出在洋脊两侧具有一系列与之平行的磁异常条带,正向和逆向交替出现,以洋脊为中心对称排列(图9-14)。每一条磁条带宽度不超过数十千米,而长度却可达几千千米以上。
3.洋底年龄的特征&
前面提到海底沉积物有从洋脊向两侧由薄逐渐变厚的特点。除此,经过洋底采样及年龄测定证明,海底沉积物还具有两个特点:一是最老的沉积物年龄不早于侏罗纪,即不早于2亿年,远比大陆上最古老的岩石(38亿年)年轻。二是海底沉积物年龄从洋脊到两侧由新到老对称分布(图9-15)。结合前述,所有这些现象究竟如何解释呢?
(三)切穿岩石圈的巨型断裂——海沟
在环太平洋地带,有一圈下陷很深的负地形海沟(图9-16),最深超过负一万米。
据近年海底深潜观察和重力、地热流等测量,发现海沟具有如下特征:
1.海沟是切穿岩石圈的深大断裂&
根据近年在中美洲海沟的深潜观察,发现海沟轴线附近,在靠近大洋一侧为一系列平行台阶,每个台阶高10—30m,宽150—200m,是一些断距不大的正断层所组成的阶梯状断层;在靠近大陆一侧,为陡峻谷壁,其上有许多近垂直的V形断层沟槽和阶步(滑阶);而在轴线附近为一宽约30m的破碎带,上有大量角砾碎块,直径可达1—3m(图9-17)。由此看来,海沟带实际上是一条断层带,又根据重力测量数据,多数学者认为是切穿岩石圈并切入上地幔的深大断裂。从断层性质来看,大陆壳推覆在大洋壳之上,属于逆断层性质;大洋壳向下斜插于大陆之下,因下插弯曲而伴生一系列张断裂或阶梯状正断层。总之,大洋中脊是将岩石圈拉开,而海沟带则是使岩石圈受到压缩。
2.海沟是陆壳和洋壳交叉重叠的复杂地带&
根据重力测量和地震资料,证明在这里大洋壳以较大的角度(45°±15°)向大陆壳下俯冲插入,换言之,大陆壳向着大洋壳之上仰冲。最初H.贝尼奥夫通过地震在这个带上作了较详细的研究,发现向大陆方向震源由浅变深构成一个倾斜带(图9—18),后来证明这个倾斜带就是大洋壳的俯冲带,所以这一个带又称为贝尼奥夫带。它实际上构成了环太平洋地震带,而全世界的中、深源地震也主要发生在这里。
3.海沟是不对称的地热流异常区&
海沟带和洋脊一样,都是地热流异常区,但海沟带显示了地热流值一低一高平行排列的特点。在海沟附近,显示一种地热流值较低(0.99—1.16HFU)的特征,一般没有现代火山活动;而在海沟向陆一侧150—200km左右,则往往是一系列火山带,在地貌上则显示一系列岛弧带,热流值显著升高,可达2.0HFU左右。在岛弧的靠大陆一侧,往往形成边缘海(或称弧后盆地),高地热流异常区也常扩大到这一地区。
海沟为什么具有上述基本特点,同样为人们的思考提供了更多的根据。
(四)海底扩张说
上述这些奇怪现象的发现,引起科学工作者的极大兴趣和注意。人们不得不提出一系列希望得到解决的问题。例如,洋脊是岩石圈的张裂带和地下岩浆涌出口,如果这种作用继续进行,岩石圈是不是会拉开?越来越多的岩浆流到哪里去海沟(或贝尼奥夫带)是岩石圈的挤压带,如果这种作用继续下去,岩石圈将会缩短到什么程度?深海沉积物既薄而又年轻,如果深海沉积速度以每100年1mm计,从太古代至今,应该有30km以上的厚度,但实际上只有几十、几百米的厚度,这是因为什么?凡此种种,如果按照传统的地质学理论是无法加以解释的。因此,一个新的课题摆在人们面前,那就是大洋壳究竟是如何形成和演化的。年,赫斯(H.H.Hess)和迪茨(R.S.Deitz)首先提出一种理论,叫海底扩张说。
海底扩张说认为:密度较小的大洋壳浮在密度较大的地幔软流圈之上;由于地幔温度的不均一性,导致地幔物质密度的不均一性,从而在地幔或软流圈中引起物质的对流,形成若干环流;在两个向上环流的地方,使大洋壳受到拉张作用,形成大洋中脊,中脊被拉开形成两排脊峰和中间谷,来自地幔的岩浆不断从洋脊涌出,冷凝后形成新的洋壳,所以大洋中脊又叫生长脊,温度和热流值都较高;新洋壳不断生长,随着地幔环流不断向两侧推开,也就是如传送带一样不断向两侧扩张,因此就产生了地磁异常条带在大洋中脊两旁有规律的排列以及洋壳年龄离洋脊越远越老的现象(图9—19);大洋中脊两侧向外扩张速度(半速度)大约为每年1—2cm,有的可达3—8cm;在向下环流的地方,或在不断扩张的大洋壳与大陆壳相遇的地方,由于前者密度较大,位置较低,便向大陆壳下俯冲,形成海沟或贝尼奥夫带;向大陆壳下面倾斜插入的大洋壳,由于远离中脊,温度已经变冷,同时海底沉积物中的水分也被带入深部,形成海沟低热流值带;另一方面,由于深部地热作用,再加上强大的摩擦,在大约深150—200km处,导致大洋壳局部或全部熔融,形成岩浆,岩浆及挥发成分的强大内压促使其向上侵入,并携带大量热能上升,因此在海沟向陆一侧一定距离处形成高热流值;同时,来自地幔的、以及混杂了重熔陆壳的岩浆喷出地表形成火山和岛弧;这些火山喷出的岩浆,由于混入了硅铝层(沉积物,大陆壳重熔物质)的成分,因此经常是属于中性的安山岩质(在环太平洋区安山岩出露的界线,称为安山岩线)。大洋壳俯冲带,由于其下部逐渐熔化、混合而消亡,所以贝尼奥夫带又称为大洋壳消亡带。
海底扩张说对于许多海底地形、地质和地球物理的特征,都能作出很好的解释。特别是它提出一种崭新的思想,即大洋壳不是固定的和永恒不变的,而是经历着“新陈代谢”的过程。地表总面积基本上是一个常数,既然有一部分洋壳不断新生和扩张,那就必然有一部分洋壳逐渐消亡。这一过程大约需2亿年。这就是在洋底未发现年龄比这更老的岩石的缘故。
三、大陆漂移说的复活
从60年代起,由于海洋科学和地球物理学等迅速发展,获得大量的有利于大陆漂移的论据,使大陆漂移的学说得到复活。例如,当初魏格纳从地图上论证了大陆边界的拼合现象,1965年E.C.布拉德重新研究了这一问题。他认为大陆的边界不应当以海岸线为准,而应当以大陆壳的边界即大陆坡的坡脚为准,并应考虑消除在大陆分裂后陆壳的增建(例如非洲尼日尔三角洲沉积增建数百千米,第三纪和近代火山喷发熔岩形成冰岛及其它火山岛等)和改造(如外力侵蚀海岸后退等)部分,然后利用电子计算机以数学方法进行拼接,终于取得令人满意的结果(图9-20)同时,大陆拼接以后,在岩石、构造、地层、古生物等方面也应该对应连接在一起,这如同把一张报纸撕成碎片,不仅可以按碎片形状拼合复原,而且复原后其上面的文字也应该是连贯的,在这方面也取得令人信服的结果。
又如,近年做出的磁极迁移曲线,也证明大陆漂移是确实存在的。把已经测出的不同时代磁极迁移轨迹在图上用曲线表示出来,称为极移曲线。图9-21中Ⅰ是北美大陆近10亿年的极移曲线,Ⅱ是欧洲大陆近10亿年的极移曲线,二者大致平行,近期才逐渐靠近,最终汇于北磁极。若欧美大陆是固定的,只能得出一条极移曲线,而今得出两条,因此只有设想欧美大陆原来是合在一起,后来逐渐分离,直到形成现在的位置,才能解释这种现象。
又如,在古气候方面也找到充足的证据。图9-22左半部表示在南方各大陆(南美东南部,非洲南部,印度大半部,澳洲南部)二叠纪早期都有过广泛的冰川活动(均有该时代的冰碛岩)。设想当时南方大陆还未分裂,并位于极区附近,后来大陆漂移(箭头表示冰川流动的方向),乃出现当前这种情况,如图的右半部所示。
四、板块构造学说的诞生
1967年,美国普林斯顿大学的摩根(J.Morgan)、英国剑桥大学的麦肯齐(D.P.Mekenzie)、法国的勒皮顺(X.LePichon)等人,把海底扩张说的基本原理扩大到整个岩石圈,并总结提高为对岩石圈的运动和演化的总体规律的认识,这种学说被命名为板块构造学说,或新的全球构造理论。到1973年,这个学说基本成型,直到现在仍在继续发展。(一)板块构造的基本思想板块构造学说认为:地球表层的硬壳——岩石圈(或称构造圈),相对于软流圈来说是刚性的,其下面是粘滞性很低的软流圈。岩石圈并非是整体一块,它具有侧向的不均一性,被许多活动带如大洋中脊、海沟、转换断层、地缝合线、大陆裂谷等分割成大大小小的块体,这些块体就是所说的板块。换言之,整个岩石圈可以理解为由若干刚性板块拼合起来的圈层,板块内部是稳定的,而板块的边缘和接缝地带则是地球表面的活动带,有强烈的构造运动、沉积作用、深成作用、岩浆活动、火山活动、变质作用、地震活动,又是极有利的成矿地带。其次,岩石圈板块是活动的,是围绕着一个旋转扩张轴在活动的,并且以水平运动占主导地位,可以发生几千千米的大规模的水平位移;在漂移过程中,板块或拉张裂开,或碰撞压缩焊结,或平移相错。这些不同的相互运动方式和相应产生的各种活动带,控制着全球岩石圈运动和演化的基本格局。
总之,板块构造说是海底扩张说的发展和延伸,而从海底扩张到板块构造,又促进了大陆漂移的复活。因此,人们称大陆漂移、海底扩张和板块构造为不可分割的“三部曲”。
(二)岩石圈板块的划分
1968年勒皮顺根据各方面的资料,首先将全球岩石圈划分成六大板块,即太平洋板块、欧亚板块、印度洋板块、非洲板块、美洲板块和南极洲板块(图9-23)。除太平洋板块几乎完全是海洋外,其余五大板块既包括大块陆地,又包括大片海洋。随着研究工作的进展,又有人进一步在大板块中划分出许多小板块。如美洲板块分为北美和南美板块,印度洋板块分为印度和澳大利亚板块,东太平洋单独划分为一个板块,欧亚板块中分出东南亚板块以及菲律宾、阿拉伯、土耳其、爱琴等小板块。
这些板块都是活动的,如太平洋板块,从太平洋东部中隆生长脊新生长出来的大洋壳,平均每年以5cm的速度向西移动,两亿年内可移动10000km。从东太平洋中隆至马里亚纳海沟的消亡带正好为约10000km,而马里亚纳及其附近海底岩石年龄也正好为1.5—2亿年。这雄辩地说明太平洋底大约每两亿年更新一次。
(三)板块的边界及其类型
作为岩石圈活动带的板块边界,可以归纳为三种类型:
1.拉张型边界&
又称分离型边界,主要以大洋中脊(或中隆、海岭)为代表。它是岩石圈板块的生长场所,也是海底扩张的中心地带。其主要特征是岩石圈张裂,基性、超基性岩浆涌出,并伴随有高热流值及浅震。如大西洋中脊、东太平洋中隆等都属于此种类型。在洋脊两侧或分布有直线排列的火山或平顶山,它们的年龄与离开洋脊的距离成正比。原先在洋脊形成的火山锥,被海浪侵蚀作用把顶截去,形成平顶山,并逐渐向两侧推移,顶部海水深度也随离洋脊的距离而加大,有时上面被数千米厚的珊瑚礁所覆盖。在西太平洋和南太平洋分布着许多平顶山。
大陆裂谷也属于拉张性边界。绝大多数裂谷为复式地堑构造,中间下陷最深,两侧为一系裂阶梯状断层,主要为高角度正断层。典型的裂谷位于隆起带的顶部,如东非大裂谷、贝加尔裂谷等,垂直断距可达数千米。在裂谷中火山活动比较频繁,浅源地震比较活跃。其明显的高地热流异常,可以达2HFU以上。有一部分大陆裂谷被认为是胚胎时期的洋脊,可发展形成新的海洋。
2.挤压型边界&
又称汇聚型边界或消亡带,也称为贝尼奥夫带。主要以岛弧-海沟为代表。在西太平洋这种型式最为典型,如日本岛弧-海沟、千岛岛弧-海沟、汤加岛弧-海沟等。这里是两个板块相向移动、挤压、对冲的地带。如图9-24所示,板块汇聚向下俯冲的弯曲部分的表层处于拉伸状态,形成一系列正断层,所以在海沟附近是浅震很多的地方。板块继续向下俯冲,另一侧板块向上仰冲,正断层到深处转变为逆断层,板块间受到强烈的挤压、摩擦,积累了大量应变能,这种能量常以地震形式突然释放出来。由于俯冲带一般向大陆方向倾斜,因此由海到陆形成从浅震到深震有规律的分布。当板块俯冲到深处完全被地幔熔融,不再发生摩擦作用,因此也就不会再有地震发生。目前已知最大震源深度为720km,据此认为这是板块俯冲的最大深度,在此深度以下,板块已经全部熔化、消亡。
大洋岩石圈板块沿着消亡带俯冲到大约150—200km深度,由于板块摩擦所产生的热和随深度而增加的热,使洋壳局部熔融形成岩浆,高温熔融物质密度相应减低,再加上强大的挥发成分所产生的内压力,促使岩浆在不同深度上升,形成火山,火山相连形成岛弧。若消亡带的倾角为45°左右,则火山岛弧带距离海沟应为150—200km,并在岛弧与海沟之间形成50—100km宽的无火山带(图9-25)。
除此,也有另外一种型式,如在南美,一侧为海沟,一侧为安第斯山,叫做山弧-海沟型。
如果是两个大陆板块汇合相撞,则出现又一种型式,一侧是高山,一侧是地缝合线,叫做山弧-地缝合线型。阿尔卑斯-喜马拉雅褶皱带,特别是它的东段喜马拉雅山脉北面的雅鲁藏布江一带,是典型的代表。两个大陆板块相向移动,它们的前缘因碰撞而强烈变形,形成褶皱山脉,使原来分离的两个板块愈合起来,其出露地表的接触线,就称为地缝合线。这种边界的特点之一是从地形上看,以没有海沟为标志,而是表现为高峻的山脉。这种边界的两侧,都是又厚又轻的陆壳,有人认为二者相遇,只能在碰撞带压缩增厚;也有的认为同样有俯冲和仰冲现象;或者两种情况兼而有之。以喜马拉雅山为例,大家普遍认为是印巴次大陆板块和欧亚板块互相碰撞的结果,但由于这一带山脉都有比较发育的中、新生代海相地层,据此断定在碰撞成山之前,在二个板块之间存在一片海洋,这就是古地中海(又称特提斯海)。由于这种情况,有人认为地缝合线是海沟发展末期的产物,即洋壳全部俯冲消亡,海洋封闭消失,跟在后面的陆壳继续移动,于是出现陆壳与陆壳相撞的现象。对于地缝合线的位置也有不同看法,有人认为喜马拉雅山就是地缝合线,但目前大多数人认为应该在山脉北侧的雅鲁藏布江一带或者更北的地方。
3.剪切型边界&
又称平错型边界,这种边界是岩石圈既不生长,也不消亡,只有剪切错动的边界,转换断层就属于这种性质的边界。
转换断层是威尔逊(J.T.Wilson)于1965年提出的一种新型断层,它构成了板块构造模式中最重要的特点之一。如图9-26所示,大洋中脊常为垂直于它的横断层所错开,并常切成许多段。从表面看,这些断层非常像平推断层,但经过地震发震机制等研究,它又和平推断层有许多差异。其主要区别是(图9-27):
(1)大洋中脊被平推断层错开(比方是左旋),由于在错开后洋脊持续扩张,使断层的运动方向跟洋脊错开的方向变得相反(比方改为右旋),而一越过洋脊,两盘位移或错动的方向即改为同向或同步。
(2)断层持续发展,两盘位移增加,但被错开的洋脊之间的距离一般并不增加(A,B图);如为平推断层,则随着断距的增加,洋脊错开的距离也增加(C,D图)。(3)转换断层只有在洋脊之间的地段才有浅震分布(A图);若为平推断层,则在断层线上都有浅震分布(C图)。
正是由于海底扩张,导致断层的运动方向和特点发生了改变,所以称为转换断层。
转换断层的推断和证实,在地球物理学界,曾经在海底磁条带被发现之后,再一次引起震动,并为海底扩张说增加了新的根据,从而使现代活动论在地学领域居于主流地位。
转换断层在海底常形成一些深沟,水平断距可达数百千米。著名的美国西部圣安德列斯断层为一右旋断层,其西盘向北移动达1100km,是有名的地震带。从前被认为是一条平推断层,威尔逊和瓦因根据地磁资料,证实它是一条错开太平洋中隆的转换断层。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。好问题,让我尝试不用公式,用跨越7000年人类文明的方式,来解读e的自然之美,争取有中学基础的人就能看懂。&br&&br&e有时被称为自然常数(Natural constant),是一个约等于2.……的无理数。&br&&br&以e为底的对数称为&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E8%2587%25AA%25E7%%25E5%25B0%258D%25E6%& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&自然对数&i class=&icon-external&&&/i&&/a&(Natural logarithm),数学中使用自然(Natural)这个词的还有&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E8%2587%25AA%25E7%%25E6%& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&自然数&i class=&icon-external&&&/i&&/a&(Natural number)。这里的“自然”并不是现代人所习惯的“大自然”,而是有点儿“天然存在,非人为”的意思。就像我们把食品分为天然食品和加工食品,天然食品就是未经人为处理的食品。&br&&br&但这样解读“自然”这个词太浅薄了!为了还原全貌,必须穿越到2500多年前的古希腊时代。&br&&br&(你也知道,穿越剧都很长(&﹏&),不喜欢长篇大论的,可直接跳到后面看结论。)&br&&br&&br&&b&“自然”的发明&/b&&br&我们知道,人类历史上曾出现过很多辉煌的文明,例如大家熟知的四大文明:古巴比伦、古埃及、古印度河以及古代中国。&br&&br&但是要说谁对现代文明的影响最大?对不起,四大文明谁都排不上!真正对现代文明影响最大的是古希腊文明,特别是古希腊的哲学、科学思想,是整个现代文明的源头和基石。这里并不是要贬低四大文明,现代文明也从各文明继承了大量的文化遗产,只是相比古希腊要少很多。&br&&br&现代人的基础教育,无论是什么国家、什么社会制度、什么民族,在教科书里除了介绍自己的古代成就外(如四大发明),还会大篇幅的介绍古希腊的科学、哲学思想,来启蒙学生的心智,这是跨越国界的共同做法。&br&&br&大家都这样做的原因,就是因为古希腊哲学家发明了科学的思维方法和“自然”(Natural)这个词,在理论中用&b&自然&/b&来取代具体的神灵,这是人类文明史上划时代的发明。如果没有这个发明,现代文明可能还会晚出现数千年,所以这是至关重要的进步。&br&&br&在古希腊文明之外的古文明里,人们解释世间万物的运行时,总是要引入神灵等超自然、拟人化的因素。例如,得病了就认为鬼神附体,洪水泛滥就认为天神发怒,石人一出天下就可以造反了,总有一个超自然的神灵在操纵万物的运行。人们偏爱形象而戏剧化的解释,拟人化的神灵恰恰具有形象、戏剧化的特点,最易于接受和传播。现代喜欢希腊神话的人数,也远多于喜欢希腊哲学的。电视里最流行各种奇幻故事,例如狼人、吸血鬼什么的。古代人也一样,不同的是我们知道这是假的,古人则认为是真的,这成为他们理解世界运行的思维定势。&br&&br&直到公元前624年,&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%25B3%25B0%25E5%258B%%2596%25AF& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&泰勒斯&i class=&icon-external&&&/i&&/a&的出现,才第一次用自然取代神灵的位置。&br&&img src=&/bef0c63ce9c856ca89f0dc80e347924c_b.jpg& data-rawwidth=&240& data-rawheight=&365& class=&content_image& width=&240&&泰勒斯被称为“科学和哲学之祖”、“科学之父”、“哲学史上第一人”!(还有比这更牛的称号吗?)&br&&br&其实泰勒斯是个多神论者,他认为神是存在的,是神让万物有了自己内在的规律。但解释万物的运行,不能靠凭空的制造故事,要靠坚实的证据来发现这些规律,并用理性的方法解读。这就是泰勒斯的最大贡献,开创了一套认识世界的全新思维方法,他关注的是证据、规律、理性,而不是神。&br&&br&尽管泰勒斯提出的理论现在看起来很粗糙。但是人们不再需要像宗教一样,把旧理论看成是不可否定的权威结论。只要有坚实的新证据和理性的推理,旧理论可以被修改或推翻,更好的理论就可以建立起来。这是一种可靠的、&b&可进化&/b&的理论体系。相反,宗教是停止进化的、只能膨胀的理论体系,例如你只能解读圣经,但不能否定圣经。&br&&br&后来的希腊哲学家不断借鉴和发展泰勒斯的理论,建立了“自然”(φ?σι?)的概念,“自然”代表万物因为本源而发生自然而然的变化。赫拉克利特还引入了&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E9%E5%E6%2596%25AF& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&逻各斯&i class=&icon-external&&&/i&&/a&(希腊语:λ?γο?,英语:Logos)的观点,用以说明万物变化的规律性。逻各斯原来是指语言、演说、交谈、故事、原则等,这里的逻各斯则主要指一种尺度、大小、分寸,即数量上的比例关系。后来对数的发明人纳皮尔就用Logos和arithmos(算法)创造了单词Logarithm 来命名对数法,经过后人简化变成了对数符号log。&br&&br&几乎和古希腊同一时代,春秋战国时代的诸子百家也提出过一些相似的思想,例如老子的道。但很可惜,这种蓬勃发展的思想爆炸因为诸多原因戛然而止,只是昙花一现。但是限于篇幅,这里不再展开,请到最后的推荐阅读中了解。&br&&br&&br&&b&“自然”&/b&与美&br&古希腊的学者还给“自然”赋予美的含义,他们认为规律性就是一种和谐感,数学的比例是种超越肉体感官、只能靠心智才能领悟到的美。&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%25AF%%25BE%25BE%25E5%%25E6%258B%%2596%25AF& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&毕达哥拉斯&i class=&icon-external&&&/i&&/a&就是其中最极端的代表,他对数学美的狂热追求超过了偏执的程度,美像神一样不可冒犯,&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%25AF%%25BE%25BE%25E5%%25E6%258B%%2596%25AF%25E4%25B8%25BB%25E4%25B9%2589& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&毕达哥拉斯主义&i class=&icon-external&&&/i&&/a&走向了科学的反面,成了宗教。&br&&img src=&/54a54e5fddb6d8b43bde_b.jpg& data-rawwidth=&350& data-rawheight=&215& class=&content_image& width=&350&&毕达哥拉斯主义者庆祝日出&br&&br&这种宗教的狂热驱动他和信徒们不断的去挖掘“自然”之美,并在数学之外的音乐、建筑、雕刻、绘画等领域发现了大量的比例关系,最有名的是毕达哥拉斯定理(中国叫勾股定理)。毕达哥拉斯认为所有图形中,圆是最对称的,所以圆是最完美的图形。参见&a href=&///?target=http%3A///show_hdr.php%3Fxname%3DPPDDMV0%26dname%3DSAS1L41%26xpos%3D30& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&毕达哥拉斯学派美学思想(朱光潜)&i class=&icon-external&&&/i&&/a&&br&&br&&br&&b&“自然”思想的意义&/b&&br&雷军说得好,“在风口上,猪都会飞”!就像乔布斯开启了移动互联网时代,泰勒斯则开启了古希腊哲学时代。&br&&br&古希腊时代是一个科学、哲学大爆炸的时代,原本黑暗的天空中突然爆发出无数的新星:赫拉克利特、毕达哥拉斯、德谟克利特、苏格拉底、柏拉图、亚里士多德、阿基米德、欧几里得、希波克拉底等等,都因为得益于这套思维方法,发现了大量的自然规律,成为各学科领域里开天辟地的先贤。&br&&br&古希腊人还把自然的概念引入社会领域,来分析社会中的现象和规律。例如亚里士多德就曾经激烈的抨击借贷,认为在所有赚钱方法中,利息是最&b&不自然&/b&的。&br&&br&以自然作为基础,会比人为强制规定作为基础更稳定和可靠。&br&例如:&br&英尺(foot)的长度就是根据人的脚长来人为规定,人的脚长差异太大,历史上英尺发生过很多次变化,不稳定,这是不自然的。&br&而&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%25B5%25B7%25E9%C& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&海里&i class=&icon-external&&&/i&&/a&的长度则接近自然,如下图,海里是根据地球周长计算的,是1角分的长度,变化就极小。&br&&img src=&/a8fc15fd76e2f5f0f85f2b_b.jpg& data-rawwidth=&272& data-rawheight=&267& class=&content_image& width=&272&&&br&对比之下,宗教等理论体系的基石并不是自然的,靠的是强制手段来确立的权威,这是不稳定的。当强制手段不再有效时,就会使宗教分裂成各种教派。&br&&br&自然思想不同于宗教,靠的是坚实的观察证据和理性思维,任何人都可以反复验证,具有可证伪性。这样打下的基础就非常的稳固。正是这种稳定性和可靠性,古希腊思想被越来越多的人所接受,对后人产生了巨大的影响,几乎奠定了现代所有科学领域的基础。&br&&br&经过2500多年的不懈努力,终于在&b&古希腊文明所铺就的最稳固基石&/b&上,人类建立起了现代文明的宏伟大厦。&br&&br&&br&&b&自然数中的“自然”&/b&&br&古希腊认为像1、2、3这样的数,是事物本身就有的属性,可以用来描述日常事物的数量和顺序,无需过多解释,就是3岁小孩也能快速理解,所以这些数被称为自然数(Natural number)。&br&&br&但这种朴素的自然观限制了数的范围,无法解释0,负数、分数、小数等数。古希腊人认为这些数并不自然,是人为了计算而&b&发明&/b&出来的,不是自然的数。&br&&br&毕达哥拉斯就非常厌恶无理数,无理数的不规律破坏了和谐美。他的门生希帕索斯Hippasus就是因为发现了√2并公布出去,居然被毕达哥拉斯以渎神的罪名被淹死了,这被称为数学史上的&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E7%25AC%25AC%25E4%25B8%%25AC%25A1%25E6%%25E5%25AD%25B8%25E5%258D%25B1%25E6%25A9%259F& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&第一次數學危機&i class=&icon-external&&&/i&&/a&。后人认为毕达哥拉斯也发现了&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E9%25BB%%E5%E5%%25E6%25AF%2594& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&黄金分割率&i class=&icon-external&&&/i&&/a&,但因为也是无理数,所以一直秘而不宣。&br&&br&现代我们知道,没有受过基础数学教育的人要想理解这些数,不仅需要了解更复杂的概念模型,还要熟悉加、减、乘、除等运算方法,只有这样才能完全明白。而更复杂的数,例如无理数、&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E4%25BB%25A3%25E6%%25E6%& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&代數數&i class=&icon-external&&&/i&&/a&和&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E8%25B6%%25B6%258A%25E6%& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&超越數&i class=&icon-external&&&/i&&/a&,也需要了解更复杂的运算。&br&&br&我们的主角e,就是超越数,既然理解e的含义需要理解相关的运算,而这些运算最早都和利息有关,所以我们继续穿越。从古希腊再往回穿越4000年,穿越到7000年前的苏美尔文明时代。&br&&br&&br&&b&利息的发明&/b&&br&7000年前,美索不达米亚的苏美尔人因为发达的农业和贸易,建立起人类最早的文明和城市,参见问题《&a href=&/question//answer/& class=&internal&&为什么会有国家?&/a&》。&br&&br&苏美尔人也第一个发明了利息,一起通过一个虚构的小故事来理解利息的起源:&br&&ul&&li&农民张三经常去城市卖粮食、换日常用品,他发现城里人很喜欢羊奶,这是一个商机!&br&&/li&&li&但是他自己没有母羊,也买不起,于是他找到牧羊人王二小,想租借他的母羊。&br&&/li&&li&张三想用大麦作为每年母羊的租金,但王二小想了想,不想把母羊租给他。&br&&/li&&li&因为母羊每年都生羊羔,把母羊给张三,虽然有租金,但羊羔的收益就没了。&br&&/li&&li&张三明白了王二小的顾虑,就承诺他只用母羊产奶,如果母羊生下羊羔,羊羔还是归王二小。&br&&/li&&li&王二小认为这样才比较划算,于是就答应了租借母羊。&br&&/li&&li&张三和王二小到神庙,要在神的见证下订立合同。&br&&/li&&li&公证人用楔形文字把债务合同刻在了泥板上,并明确了租金和羊羔的归属。&br&&/li&&/ul&&br&羊羔收益成为租借者的应得利润,&b&这很公平,也很自然&/b&。&br&&br&后来人们发现借钱也应该给羊羔收益,因为这笔钱如果用来买母羊,每年都会有羊羔收益。所以钱借给贷款者,他除了要归还本金,还要归还这笔钱本应获得的羊羔收益。&br&&br&这个羊羔收益就成为了后来我们熟知的利息,在苏美尔文字中,利息的单词mas原本是牲畜幼崽的意思,随着时间的推移,利息的含义逐渐和牲畜没有了关系。这和我们汉字中货币、宝贝、财产等词中都含“贝”字是一样,因为海贝就是3000多年前夏商时代流通的货币。&br&&br&历史上每次新能源的普及都会引发人类社会革命性的进步,利息就是一种革命性的新能源发明,只是这次驱动的不是机器,而是人。&br&&br&&b&利息的价值就在于其巨大的激励作用&/b&,驱动人们把自己的资源拿出来,分享给其他人使用。利息的激励模式也迅速在实物、粮食、金银等资产借贷上得到普及。金融领域的第二大创新(第一是货币)就这样诞生了。&br&&br&4000多年前的《埃什嫩那法典》(The Law of Eshnunna)中就有了对利息的规定:&br&每1谢克尔&白银&(180粒大麦)的利息是36粒大麦(即利率为20%);&br&每300塞拉(sila)&谷物&的利息是100塞拉(即利率为33.33%)。&br&&img src=&/7a4a2a60e88f3e4d56129a_b.jpg& data-rawwidth=&580& data-rawheight=&535& class=&origin_image zh-lightbox-thumb& width=&580& data-original=&/7a4a2a60e88f3e4d56129a_r.jpg&&来源:&a href=&///?target=http%3A//iraq.iraq.ir/museum/fi/.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&Iraq National Museum&i class=&icon-external&&&/i&&/a&&br&&br&激励机制设计在经济、管理、教育等领域有着核心动力的关键作用,设计好了就可以把人的自身潜能释放出来,这一点,喜欢玩游戏的都有切身体会。正是知乎的激励机制设计的好,我这篇超长文才写得出来。XX问答类网站无法让用户做到,是因为他们激励的方向是数量,而不是质量。&br&&br&尽管利息能激励交换,但人们对利息还是有着爱恨交加的复杂感情:当急需钱时,人们焦急的不惜一切代价筹钱;等到终于借到钱,需要还利息时,人们又开始愤愤不平。&br&&br&柏拉图就曾经主张,人们应该只还本金,不要归还利息。参见&a href=&///?target=http%3A///ReadNews.asp%3FNewsID%3D27306& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&古希腊的债务危机&i class=&icon-external&&&/i&&/a&&br&他的学生亚里士多德在《政治论》一书中也激烈的抨击利息,认为在所有赚钱方法中,&b&利息是最不自然的&/b&。&br&&blockquote&And this term interest, which means the birth of money from money, is appliedto the breeding of money because the offspring resembles the parent. Wherefore of an modes of getting wealth this is &b&the most unnatural&/b&.&/blockquote&来源:&a href=&///?target=http%3A//classics.mit.edu/Aristotle/politics.1.one.html& class=& external& target=&_blank& rel=&nofollow noreferrer&&&span class=&invisible&&http://&/span&&span class=&visible&&classics.mit.edu/Aristo&/span&&span class=&invisible&&tle/politics.1.one.html&/span&&span class=&ellipsis&&&/span&&i class=&icon-external&&&/i&&/a&&br&&br&每个时代的人们都有他们思想的天花板,亚里士多德的天花板就是不能接受金钱可以像生命一样增殖。他认为这是荒诞的、不是钱原来的属性、是不自然的。但如果他知道利息的起源,明白利息在经济系统中的推动作用,他可能会改变观点,整个人类经济和政治史都会彻底改写了。&br&&br&柏拉图和亚里士多德并不是第一个站出来抨击利息的人,但是他们在历代学者和政治精英中的巨大影响力,这些观点后来成为了社会的主旋律,后世的社会现象,例如中世纪教会禁止收息放贷、犹太人被歧视迫害,以及马克思的共产主义思想,都和柏拉图、亚里士多德有着一脉相承的关系。&br&&br&好了,先从历史里出来一会儿,让我们来看一下利息和e的关系。&br&&br&&br&&b&利息中的e&/b&&br&e和圆周率π都是超越数,π的含义可以通过下图的&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E5%%25E5%259C%%259C%25AF_%28%25E5%E5%25BE%25BD%29& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&割圆术&i class=&icon-external&&&/i&&/a&来很形象的理解。&br&假设等边形的对角线长为1,只要等边形的边足够多,算出来的周长就可以越来越接近圆周率π。&br&&img src=&/93faab14be951b226ad155debe04dacf_b.jpg& data-rawwidth=&300& data-rawheight=&300& class=&content_image& width=&300&&&br&但是解释e的含义却很难找到这样直观的例子,阮一峰翻译的文章《&a href=&///?target=http%3A///article/50264/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&数学常数e的含义&i class=&icon-external&&&/i&&/a&》说的很好,只是公式太多,并不直观。&br&幸好我在原文《&a href=&///?target=http%3A///articles/an-intuitive-guide-to-exponential-functions-e/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&An Intuitive Guide To Exponential Functions & e&i class=&icon-external&&&/i&&/a&》中找到了很直观的图,只要理解了这个例子,e的含义就明白了。&br&&br&假设你在银行存了1元钱(下图蓝圆),很不幸同时又发生了严重的通货膨胀,银行存款利率达到了逆天的100%!&br&银行一般1年才付一次利息,根据下图,满1年后银行付给你1元利息(绿圆),存款余额=2元&br&&img src=&/c76ffeb8fe55e54c7faf98c53ca4371c_b.jpg& data-rawwidth=&400& data-rawheight=&226& class=&content_image& width=&400&&&br&银行发善心,每半年付利息,你可以把利息提前存入,利息生利息(红圆),1年存款余额=2.25元&br&&img src=&/d632afd3df06a857ecb93b_b.jpg& data-rawwidth=&414& data-rawheight=&226& class=&content_image& width=&414&&&br&&br&假设银行超级实在,每4个月就付利息,利息生利息(下图红圆、紫圆),年底的余额≈2.37元&br&&img src=&/ae3bed44da1118ecf76b_b.jpg& data-rawwidth=&414& data-rawheight=&226& class=&content_image& width=&414&&&br&假设银行人品爆发,一年365天,愿意天天付利息,这样利滚利的余额≈2.元&br&&br&假设银行丧心病狂的每秒付利息,你也丧心病狂的每秒都再存入,1年共秒,利滚利的余额≈2.元&br&&br&这个数越来越接近于e了!&br&哎呀!费了半天劲也没多挣几个钱啊!&br&对!&b&1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一个无法突破的天花板,这个天花板就是e,&/b&有兴趣可以用这个&a href=&///?target=http%3A///%3Fd%3DUGx1ZyBpbiBkaWZmZXJlbnQgdmFsdWVzIG9mIG4gdG8gYXBwcm94aW1hdGUgZS4%26c%3DbiA9IDEwMHxlID0gKDEgKyAxL24pXm58fHx8fA%26s%3Dsssssss%26v%3D0.9& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&网上计算器&i class=&icon-external&&&/i&&/a&算一下。&br&&br&我们和圆周率再做个对比:&ul&&li&多边形的边数和利滚利的次数是相似的。&/li&&li&对角线为1的n边等边形,n趋于无穷,周长就无限接近于π,即π是周长的最大值。&br&&/li&&li&年利率为1(100%)的1元存款,利滚利的次数n趋于无穷,存款就无限接近e,即e是存款的最大值。&/li&&/ul&&br&换种表述方法:&br&&ul&&li&每个完美的圆,其周长都是π的倍数;&br&&/li&&li&每个理想的存款,其余额都是e的倍数。&br&&/li&&/ul&这里停一停,你好好体会一下。&br&&br&按照自然的观点,如果圆是最美的,那最赚钱也是最理想的。&br&&br&有人问了:为啥银行不每秒返利息呢?这样就不是100%回报率,而是171.8%了,还我的71.8%!&br&银行哭到:臣妾做不到啊!!!&br&&br&以上是意淫,银行不会这样发利息,洗洗睡吧,下面这个案例才比较现实。&br&&br&&br&&b&利息的逆运算&/b&&br&还是从一个虚构的故事开始:&br&&ul&&li&有一土豪要去银行存入大额存款,比如存1元。&br&&/li&&li&银行经理推荐他投资理财产品,因为年利率高达100%,按照指数运算,bla bla bla……&br&&/li&&li&但土豪的数学只有小学水平,听不懂有点烦,就问投资多长时间才能到10倍,100倍,1000倍?&br&&/li&&li&经理有点懵,土豪不按常理出牌啊!&br&&/li&&li&一般人都是根据存款时间问收益,例如收益第1年多少、第2年多少、第3年多少……&br&&/li&&li&土豪居然逆向思维,根据收益问时间,多少年2倍,多少年5倍,多少年10倍!&br&&/li&&li&不愧是老板,不问过程,只问结果!&br&&/li&&li&于是经理就从第1年开始算,把10年内每年的收益都算出来,列成一个收益列表,如下图:&/li&&img src=&/b99ea4cab8c2d7ee6fae76c6b9ca75d8_b.jpg& data-rawwidth=&196& data-rawheight=&325& class=&content_image& width=&196&&&li&然后再找出收益最接近10倍,100倍,1000倍的年份指给土豪&br&&/li&&li&土豪一看第4年、第7年、第10年就肯定超过预期收益,非常高兴!&br&&/li&&/ul&&br&经理用这张表查找收益,再找到最接近收益的大体年份的过程,就是利息的逆运算,是最简单的对数运算,这个表就是对数表的雏形。&br&&br&其实这和我们根据加法表进行减法运算、根据乘法表进行除法运算是同一个道理。&br&例如知道了&img src=&///equation?tex=3%5Ctimes+7%3D21& alt=&3\times 7=21& eeimg=&1&&,就可以很快知道&img src=&///equation?tex=21%5Cdiv+3& alt=&21\div 3& eeimg=&1&&的除法逆运算结果了。&br&&br&好了,放松一下大脑,继续回来穿越历史。&br&&br&&br&&b&对数发明的历史&/b&&br&据说4000多年前,古巴比伦时代的人们就发明对数和对数表了,但因为我没找到资料证实,只能从近代开始。&br&&br&16、17世纪,英、法加入了大航海的行列,开始了美洲殖民地的开拓,远洋贸易变得日益频繁。那时的人们已经知道地球是球形,大海上船只的位置靠经纬度来确定。&br&&br&纬度测定很容易,几千年前人们就知道,通过测量北极星的仰角,可以估算出船已经在南北方向航行了多远。但是经度的测量不是一般的困难。在茫茫的大洋上,如果无法准确测定船只的经度,代价会极为高昂。&br&&br&1707年,四艘英国战舰击败法国地中海舰队回航,10多天的浓雾让舰队完全迷失,因为算错经度,舰队触礁,两千名士兵死亡。1714年英国悬赏2万英镑(相当于现代的2000多万人民币),寻求精确测得经度的方法。&br&&br&对于商人来说,与市场上的同类对手竞争,谁的航海定位越准确,意味着风险越低、利润越高。&br&对海军也是,同样的战舰,定位越准确,航行的时间越短,在战争中速度往往是决胜的关键。&br&&br&经度的精确测量问题直到18世纪才得到有效解决,这归功于&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E7%25BA%25A6%25E7%25BF%25B0%25C2%25B7%25E5%E9%E6%25A3%25AE& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&约翰·哈里森&i class=&icon-external&&&/i&&/a&发明了高精度机械钟表。这段历史还被拍成了电影和记录片,推荐一本精彩的书《&a href=&///?target=http%3A///subject/2221395/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&经度:一个孤独的天才解决他所处时代最大难题的真实故事》&i class=&icon-external&&&/i&&/a&和罗辑思维的节目《&a href=&///?target=http%3A///v_show/id_XNTU3ODc1MzYw.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&击溃牛顿的钟表匠&i class=&icon-external&&&/i&&/a&》。&br&&a class=&video-box& href=&///?target=http%3A///v_show/id_XNTU3ODc1MzYw.html& target=&_blank& data-video-id=&& data-video-playable=&& data-name=&击溃牛顿的钟表匠[罗辑思维]No.23& data-poster=&/1A71947E1ADE255-D19-FD0ED587CDF9& data-lens-id=&&&
&img class=&thumbnail& src=&/1A71947E1ADE255-D19-FD0ED587CDF9&&&span class=&content&&
&span class=&title&&击溃牛顿的钟表匠[罗辑思维]No.23&span class=&z-ico-extern-gray&&&/span&&span class=&z-ico-extern-blue&&&/span&&/span&
&span class=&url&&&span class=&z-ico-video&&&/span&/v_show/id_XNTU3ODc1MzYw.html&/span&
&/a&&br&但是在哈里森之前的数百年里,人们只能求助于天文学家来解决,因为天空就是人们最早、最精确的钟表,太阳、月亮、星星等天体就是上面的表针,读懂这个钟表,就可以知道时间和经度了。&br&&br&天文学家观测天体,计算出运行的轨道,来预测未来几年每个时间点上天体所在的精确位置,英国天文学家以格林尼治天文台的时间为基准,再把时间和天体位置整理成详细的表格,公开出版发行。这套星表可不便宜,星表加上六分仪售价约20英镑,相当于现在2万人民币,即便这样也经常脱销。海上的人用六分仪测量天体,再去查那本高价天文表格,求得当地时间和格林尼治时间,知道两地的时间差,就知道现在的经度了。&br&&br&16世纪和17世纪之交,天文学家&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E7%25AC%25AC%25E8%25B0%25B7& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&第谷&i class=&icon-external&&&/i&&/a&和&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E5%E5%258D%259C%25E5%258B%2592& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&开普勒&i class=&icon-external&&&/i&&/a&通过大量的观测,绘制了当时最精确的星图,解决了天文学家天文数据精度不足的难题。有了高精度的星图,全欧洲的数学家开始了天体轨道的计算竞赛,很多科学家也因此获得了商业和学术上的丰厚回报。那时的天文学家、数学家可不是像现代这么冷门,更像当今那些IT、金融等热门行业里的精英一样,享受着人人羡慕的不菲高薪。&br&&br&顺便说一下,日心说之所以能取代地心说,也是因为日心说模型更简洁,不仅计算起来更简单,而且预测非常准确,可以很好的解释行星逆行等现象,这是地心说完全做不到的。&br&&br&即使这样,要想预测天体的运行,其计算也是极其繁琐和浩瀚的,在解决计算问题时,数学家们发明了大量崭新的数学理论和计算工具,包括对数、解析几何、微积分和牛顿力学等伟大的创新。可以说天文学是当时科学界最闪亮的宝石,是当时的高科技热门产业。&br&&br&其中,对数的发明人就是&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E7%25B4%%25BF%25B0%25C2%25B7%25E7%25B4%258D%25E7%259A%25AE%25E7%2588%25BE& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&約翰·納皮爾&i class=&icon-external&&&/i&&/a&。&br&&img src=&/95dd249a344ced0b3bfa6_b.jpg& data-rawwidth=&317& data-rawheight=&400& class=&content_image& width=&317&&&br&纳皮尔是天文学家、数学家,在计算轨道数据时,也被浩瀚的计算量所折磨。&br&&blockquote&&看起来在数学实践中,最麻烦的莫过于大数字的乘法、除法、开平方和开立方,计算起来特别费事又伤脑筋,于是我开始构思有什么巧妙好用的方法可以解决这些问题。&&br&--约翰·纳皮尔,《奇妙的对数表的描述》(1614)&/blockquote&《&a href=&///?target=http%3A///subject/4605553/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&e的故事:一个常数的传奇 &i class=&icon-external&&&/i&&/a&》&br&&br&但纳皮尔不是一般人,不想像IT民工一样苦逼的重复劳动,于是用了20年的时间,进行了数百万次的计算,发明了对数和对数表,堪称学霸中的战斗机。&br&&br&为了理解对数计算的优势,我们通过案例来说明,下面的表格里有两个数列:&br&&img src=&/f5278eaceecad_b.jpg& data-rawwidth=&490& data-rawheight=&50& class=&origin_image zh-lightbox-thumb& width=&490& data-original=&/f5278eaceecad_r.jpg&&第1行是自然数,他们是等差的;&br&第2行是2的倍数,他们是等比的;&br&要计算第2行的等比数列中任意两个数的乘积,例如&img src=&///equation?tex=16%5Ctimes+64& alt=&16\times 64& eeimg=&1&&;&br&先到第1行的等差数列,寻找&b&对应的数&/b&,16对应4,64对应6;&br&然后做加法,&img src=&///equation?tex=4%2B6%3D10& alt=&4+6=10& eeimg=&1&&,再查找10所&b&对应&/b&等比数列的1024;&br&得到计算结果就是&img src=&///equation?tex=16%5Ctimes+64%3D1024& alt=&16\times 64=1024& eeimg=&1&&&br&&br&借助这个表,仅靠心算就可以用&img src=&///equation?tex=4%2B6%3D10& alt=&4+6=10& eeimg=&1&&的加法,完成麻烦的16×64乘法。&br&同样也可以进行除法变减法的运算,把&img src=&///equation?tex=1024%5Cdiv+128%3D& alt=&1024\div 128=& eeimg=&1&&,变为&img src=&///equation?tex=10-7%3D3& alt=&10-7=3& eeimg=&1&&,对应结果为8。&br&把这个表变的更长,就可以计算数值更大的乘法,这个表就是极度简化的对数表。&br&&br&以上仅仅是对数的优点之一,对数的易于计算,大大减少了数学家、天文学家的计算量。&br&拉普拉斯认为“对数的发现,以其节省劳力而&b&延长了天文学家的寿命&/b&”&br&伽利略说过“给我空间、时间及对数,我就可以创造一个宇宙。”&br&&br&如果把对数表的数列设计成尺子,就成了计算尺。有兴趣可以读果壳网的《&a href=&///?target=http%3A///article/38752/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&如果没有计算器,我们就用计算尺吧&i class=&icon-external&&&/i&&/a&》&br&&img src=&/09c49f39d79fe75d63ae6b82ff6bfbbb_b.jpg& data-rawwidth=&962& data-rawheight=&221& class=&origin_image zh-lightbox-thumb& width=&962& data-original=&/09c49f39d79fe75d63ae6b82ff6bfbbb_r.jpg&&&br&把直尺掰弯了就成了柱状算尺,像不像风水大师的道具?&br&&img src=&/28383eaf4d65d3fac56b6ff482bdf183_b.jpg& data-rawwidth=&220& data-rawheight=&200& class=&content_image& width=&220&&&br&&b&微积分中的e&/b&&br&有人说:我不懂微积分,估计看不懂!&br&&br&没关系!你可以这样理解,积分是升维的过程,微分是降维的过程。&br&例如&br&把一张张纸叠起来变成厚厚的词典,这是从2维变成3维的升维,这是积分;&br&把一大块羊肉,切成一片片羊肉片,就是从3维为变2维的降维,这是微分。&br&&br&在微积分中,底数为e的指数函数&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&,其导数还是这个函数&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&,也就是不论求多少次导数,其导数就像一个常量一样永远是恒定的。不知道别人的感觉如何,反正我第一次知道时是很惊奇的。&br&&br&举个例子:&br&西瓜都切过吧?&br&无论你怎么切一个实心球,其横截面都是圆面,也就是3维降2维,还是和圆有关。&br&2维的圆面也是有很多1维的同心圆组成,也就是2维降1维,还是和圆有关。&br&如上所说,球被降维了2次还是和圆有关,π这个常数你是甩不掉的。&br&这一点对更高维度的球也适用,参见&a href=&///?target=http%3A//zh.wikipedia.org/wiki/N%25E7%25BB%25B4%25E7%E9%259D%25A2& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&n维球面&i class=&icon-external&&&/i&&/a&。&br&&br&&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&也是这样,而且比球面更厉害&br&无论如何降维,&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&总是老样子,一点儿都没变!&br&就好像你切掉孙悟空的一部分,你以为是一小片肉,睁眼一看,居然是另一个孙悟空,而且一样大!&br&这种自相似或全息性太匪夷所思、太好玩儿了!&br&大刘!我知道怎么化解《三体》外星人的降维攻击了!&br&&br&下面就是&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&在直角坐标系中的样子&br&&img src=&/8e1daadae2acd20ea925b1e50713ec56_b.jpg& data-rawwidth=&525& data-rawheight=&517& class=&origin_image zh-lightbox-thumb& width=&525& data-original=&/8e1daadae2acd20ea925b1e50713ec56_r.jpg&&&br&&br&&b&美妙的螺线&/b&&br&在上面的部分中,指数函数&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&的美并没有真正的体现出来。&br&让我们换一个视角看,你一定会大吃一惊。&br&&br&我们知道二维坐标系除了直角坐标系外,还有一种常用的是&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%259E%%259D%%25A0%%25B3%25BB& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&极坐标系&i class=&icon-external&&&/i&&/a&,如下图&br&&img src=&/570edd284a0b45db60eb_b.jpg& data-rawwidth=&335& data-rawheight=&305& class=&content_image& width=&335&&&br&我们把指数函数&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&换成极坐标,就变成了&img src=&///equation?tex=e%5E%7B%5Ctheta+%7D+& alt=&e^{\theta } & eeimg=&1&&,&img src=&///equation?tex=%5Ctheta+& alt=&\theta & eeimg=&1&&是点与极轴的夹角。&br&这时的指数函数就会变成下图的样子,这个螺线叫对数螺线(&a href=&///?target=http%3A//en.wikipedia.org/wiki/Logarithmic_spiral& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&Logarithmic spiral&i class=&icon-external&&&/i&&/a&),又叫&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E7%25AD%%25A7%%259E%25BA%25E7%25BA%25BF& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&等角螺线&i class=&icon-external&&&/i&&/a&。&br&之所以叫等角螺线,是因为在极坐标中,螺线和射线的夹角始终是一个固定夹角,如下图所示,蓝线每次穿过射线时,其夹角是固定的,也就是等角,我们在后面会用到这个等角特性。&br&&img src=&/0fe31a5adbf48ebfcc4bfe5_b.jpg& data-rawwidth=&1024& data-rawheight=&1024& class=&origin_image zh-lightbox-thumb& width=&1024& data-original=&/0fe31a5adbf48ebfcc4bfe5_r.jpg&&有人说:等等!我好想在哪里见过这货?&br&&img src=&/abafa0f8f69a2_b.jpg& data-rawwidth=&1024& data-rawheight=&1024& class=&origin_image zh-lightbox-thumb& width=&1024& data-original=&/abafa0f8f69a2_r.jpg&&&br&不对,这个图,好像有什么东西乱入了!&_&#&br&这就是人体曲线,啊不,是斐波那契螺线,网上很流行玩这种摄影,都快被玩坏了。&br&&br&&a class=&video-box& href=&///?target=http%3A///v_show/id_XNzU5MDE2MDM2.html& target=&_blank& data-video-id=&& data-video-playable=&& data-name=&柯南的搞笑甩湿发秀 Conan Wet Hair& data-poster=&/3FAAEDF97F0A84C-EFEC-E795C25E1B& data-lens-id=&&&
&img class=&thumbnail& src=&/3FAAEDF97F0A84C-EFEC-E795C25E1B&&&span class=&content&&
&span class=&title&&柯南的搞笑甩湿发秀 Conan Wet Hair&span class=&z-ico-extern-gray&&&/span&&span class=&z-ico-extern-blue&&&/span&&/span&
&span class=&url&&&span class=&z-ico-video&&&/span&/v_show/id_XNzU5MDE2MDM2.html&/span&
&/a&柯南的表情好贱!&br&&br&斐波那契数列就是1,1,2,3,5,8,13,21,34,55,89……这样的数列。&br&其特点是前两个数加起来就是下一个数,例如&br&1+1=2&br&1+2=3&br&2+3=5&br&……&br&34+55=89&br&……&br&用这些数画出来的半圆,可以拼接成下面的螺线形状,这就是斐波那契螺线。&br&&img src=&/4be30ec8ca511b0b737654_b.jpg& data-rawwidth=&450& data-rawheight=&280& class=&origin_image zh-lightbox-thumb& width=&450& data-original=&/4be30ec8ca511b0b737654_r.jpg&&&br&&br&套用在美女图片上就可以这样玩,虽有过度解读之嫌,但可以获得极好的传播效果。&br&&br&&img src=&/3463cebd7f6d79f1846b9e_b.jpg& data-rawwidth=&800& data-rawheight=&800& class=&origin_image zh-lightbox-thumb& width=&800& data-original=&/3463cebd7f6d79f1846b9e_r.jpg&&&br&&br&有趣的是这个数列还和黄金比例有关,例如55/34≈1.6176,接近黄金分割比例1.618,数列的数字越到后面,结果就越趋近于黄金分割这个无理数,如下图&br&&img src=&/badda5605_b.jpg& data-rawwidth=&720& data-rawheight=&400& class=&origin_image zh-lightbox-thumb& width=&720& data-original=&/badda5605_r.jpg&&&br&&br&不过斐波那契螺线仅仅是对一种叫黄金螺线(&a href=&///?target=http%3A//en.wikipedia.org/wiki/Golden_spiral& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&Golden spiral&i class=&icon-external&&&/i&&/a&)的近似,黄金螺线是一种内涵黄金分割比例的对数螺线&img src=&///equation?tex=e%5E%7B%5Ctheta+%7D+& alt=&e^{\theta } & eeimg=&1&&,下图红色的才是黄金曲线,绿色的是“假黄金螺线”(斐波那契螺线),近似却不重合。&br&&img src=&/bee9d420ca249c47f9f4d3_b.jpg& data-rawwidth=&988& data-rawheight=&666& class=&origin_image zh-lightbox-thumb& width=&988& data-original=&/bee9d420ca249c47f9f4d3_r.jpg&&&br&很多科学家发现对数螺线&img src=&///equation?tex=e%5E%7B%5Ctheta+%7D+& alt=&e^{\theta } & eeimg=&1&&在自然界中广泛存在。从大如星系、台风,到小如花朵、海螺……宇宙中到处都是对数螺线&img src=&///equation?tex=e%5E%7B%5Ctheta+%7D+& alt=&e^{\theta } & eeimg=&1&&的身影&br&&br&&img src=&/17d31ae930dc71ef374c8_b.jpg& data-rawwidth=&850& data-rawheight=&850& class=&origin_image zh-lightbox-thumb& width=&850& data-original=&/17d31ae930dc71ef374c8_r.jpg&&&br&原来e以这种特殊的方式隐藏在自然之中。需要注意的是,这不是e被称为自然底数的原因,这和大自然没太大关系。&br&&br&&br&&b&为什么自然界中存在这么多的对数螺线呢?&/b&&br&因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。&br&&br&我们以飞蛾扑火为例&br&亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞成直线,这样飞才最节省能量。&br&&br&&br&&br&&img src=&/74fb591a32c_b.jpg& data-rawwidth=&753& data-rawheight=&729& class=&origin_image zh-lightbox-thumb& width=&753& data-original=&/74fb591a32c_r.jpg&&&br&&br&但自从该死的人类学会了使用火,这些人造光源因为很近,光线成中心放射线状,可怜的蛾子就开始倒霉了。&br&&br&&img src=&/db27eb510c4e0c4c7bf06_b.jpg& data-rawwidth=&746& data-rawheight=&645& class=&origin_image zh-lightbox-thumb& width=&746& data-original=&/db27eb510c4e0c4c7bf06_r.jpg&&&br&&br&&br&蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞成了等角螺线,最后飞到火里去了,这种现象还被人类称为昆虫的正趋光性。&br&&br&蛾子说:&br&趋你妹的光啊,傻瓜才瞪着光飞,不知道会亮瞎眼啊?!!&br&我们完全被人类误导了,亿万年才演化出的精妙直线导航方法,被人类的光污染干扰失效了!&br&不用假慈悲的飞蛾扑火纱罩灯了,凸(#‵′)凸,赶紧把灯关了吧!&br&&br&注意下图飞虫都在做螺线飞行,如果昆虫有趋光性。直飞不是更好吗?&br&&img src=&/c6b088a8df_b.jpg& data-rawwidth=&990& data-rawheight=&678& class=&origin_image zh-lightbox-thumb& width=&990& data-original=&/c6b088a8df_r.jpg&&不要以为只有蛾子会这样,人在用指南针导航时也有同样的问题,因为篇幅太长就不展开了,有兴趣请移步《&a href=&/question//answer/& class=&internal&&既然昆虫有趋光性,为什么昆虫不齐刷刷地奔向太阳?&/a&》。&br&&br&根本原因是原来作为参考的平行场变成了中心发散的场,导致直线运动变成了螺线运动。&br&&br&&img src=&/bb758c3a58bb020cdcecc4ff_b.jpg& data-rawwidth=&721& data-rawheight=&310& class=&origin_image zh-lightbox-thumb& width=&721& data-original=&/bb758c3a58bb020cdcecc4ff_r.jpg&&&br&&br&我们也知道,绝对平行的场在自然界中是不存在的,只是我们为了计算方便,在小范围内近似认为平行而已。如果把尺度放大了看,更多的场是不平行的、是发散的,所以自然界中大量存在等角螺线现象就很正常了。&br&&br&例如理想状态下,流体应该是直线运动的,但在发散场和地球自转的作用下,就会像飞蛾一样走出类似等角螺线的形状,天上的台风和水中的漩涡就是这样形成的,不过实际情况远比这要复杂,只能近似这样考虑。&br&&br&关于对数螺线还有一个小笑话。&br&对数螺线是笛卡儿在1638年发现的,雅各布·伯努利也做了研究,并发现了许多非常优美的特性,经过各种变换,结果还保持原来的样子。&br&他十分惊叹和欣赏这种美,要求死后自己的墓碑上一定要刻上对数螺线,以及墓志铭“纵使改变,依然故我”(eadem mutata resurgo)。&br&结果石匠同志误将阿基米德螺线刻了上去,雅各布九泉有知一定会把棺材掀翻的!&br&(╯ ̄皿 ̄)╯︵┴─┴&br&&br&阿基米德螺线是这样的:&br&&img src=&/b6fcc0ffd56bfd_b.jpg& data-rawwidth=&300& data-rawheight=&274& class=&content_image& width=&300&&常人的确看不出区别,你能看出来吗?千万不要搞混啊!&br&&br&&br&好了!长篇大论快结束了,能坚持到这的都是Winner!下面开始讲为什么叫自然底数了。&br&&br&&br&&b&对数的底数&/b&&br&对数中最常用的底数是10、2和e&br&&br&为什么要以10为底数?&br&因为我们使用10进制,&a href=&///?target=http%3A//zh.wikipedia.org/wiki/%25E6%%25E9%E7%25BA%25A7& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&数量级&i class=&icon-external&&&/i&&/a&和科学计数法也是10的倍数,例如阿伏伽德罗常数&img src=&///equation?tex=6.02%5Ctimes+10%5E%7B23%7D+& alt=&6.02\times 10^{23} & eeimg=&1&&。&br&所以&img src=&///equation?tex=10%5E%7Bx%7D+& alt=&10^{x} & eeimg=&1&&的逆运算,以10为底的对数 lg x最常用、最方便,所以又称&b&常用对数&/b&。&br&&br&10进制是数字表示法中最容易普及的,根源是我们有10个手指,人们初学数字时都喜欢借助10个手指学习1、2、3……10。到了学加减运算时,更是喜欢借助手指计算。不仅老师认为这样教学直观,学生也认为这样练习方便。通过教育,这个强大的习惯,被最广泛的传播和固化下来。但如果是8个腕足的章鱼发展出了文明,可能更喜欢8进制。&br&&br&为什么要以2为底数?&br&因为2倍或成倍式的增长,即&img src=&///equation?tex=2%5E%7Bx%7D+& alt=&2^{x} & eeimg=&1&&,是我们日常中&b&最简单&/b&的指数式增长。我们经常说数量成倍、翻倍、翻番、翻两番,都是2倍率的增长。&br&你可能也发现了,前面的存款例子实际上都是&img src=&///equation?tex=2%5E%7Bx%7D+& alt=&2^{x} & eeimg=&1&&,因为这样的例子最容易理解。所以&img src=&///equation?tex=2%5E%7Bx%7D+& alt=&2^{x} & eeimg=&1&&的逆运算,底数为2的对数 lb x 也会比较常见。&br&&br&虽然对数的底数2和10是人们使用体验和认知体验最好的对数,但是在数学中,这两个数却是&b&不自然&/b&的,因为都是在方便人的需要。&br&&br&&br&&b&为什么&/b&&b&e&/b&&b&被称为自然底数?&/b&&br&用e做底数的对数表达方式是 ln x &br&&br&按照古希腊哲学家的自然思想,自然是指万物的内在规律,就像自然数一样,是事物本身的属性,不以人的喜好而变化。&br&&br&前面在讲“利息中的e”时,曾拿π和e做过对比。&br&&ul&&li&边数越多越接近圆,利滚利越多越接近最大收益&br&&/li&&li&一个对角线为1的多边形,其周长最大值是π&br&&/li&&li&一个本金为1利率为1的存款,其存款余额的最大值是e&br&&/li&&/ul&&br&按照古希腊的自然思想来看:&br&&ul&&li&对于一个完美的圆来说,π才是自然的,是圆本身的属性,尽管从数值上是一个“无理”的数。&br&&/li&&li&对于最快速的指数增长来说,e才是自然的,这是指数增长本身的属性。&/li&&/ul&&br&而科学家们也发现,在做数学分析时,用e做底数的对数 ln x 做计算,其形式是最简约的,用其他对数例如lg x 做计算,都会画蛇添足的多一些麻烦。&br&&br& ln x 就像美学上的“增之一分则太长,减之一分则太短”。&br&&br&对数学家来说,最简就是最美。这是一种纯理性的美,通过感官是无法欣赏的,只有熟悉数学的人才能深刻的感受到。这种美令无数数学家为之痴迷,虽然不会像毕达哥拉斯那样狂热,但也终其一生孜孜以求。&br&&br&&br&&b&结论&/b&&br&&ol&&li&历史上,&自然&是一种划时代的思维方法,自然还有和谐、完美的内涵&/li&&li&随着利息、对数、指数的发明,人们发现了e的存在&/li&&li&1元存1年,在年利率100%下,无穷次的利滚利就会达到e&br&&/li&&li&e和π一样都是内在规律,反映了指数增长的自然属性&/li&&li&大自然中到处都有对数螺线&img src=&///equation?tex=e%5E%7B%5Ctheta+%7D+& alt=&e^{\theta } & eeimg=&1&&的身影&/li&&li&其他底数都是&b&发明&/b&出来方便人使用,只有e为底数是被&b&发现&/b&的&/li&&li&数学家发现以e为底数的对数是计算中最简、最美、最自然的形式&/li&&/ol&&br&把e冠以&b&自然&/b&底数、&b&自然&/b&常数之名,把e为底数的对数称为&b&自然对数&/b&,是数学家们用自己的方式对e所进行的美学评价。&br&&br&2004年Google公司IPO上市,创始人Larry Page和Sergey Brin决定上市融资总额为美元,也就是e的前10位数字。因为他们都精通数学,很喜欢e的自然之美,当然也希望公司能像&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&一样实现指数型高速增长。&br&Google其实是Googol的错误拼写,Googol代表&img src=&///equation?tex=10%5E%7B100%7D+& alt=&10^{100} & eeimg=&1&&这样的天文数字,实现这样大的数看来也只能靠&img src=&///equation?tex=e%5E%7Bx%7D+& alt=&e^{x} & eeimg=&1&&指数增长了。&br&&br&&img src=&/3332d5fdc3e5f96d21afd85bfaf2afd1_b.jpg& data-rawwidth=&640& data-rawheight=&480& class=&origin_image zh-lightbox-thumb& width=&640& data-original=&/3332d5fdc3e5f96d21afd85bfaf2afd1_r.jpg&&&br&&br&为什么写这个超长的文章?&br&因为现有的解答我都不满意,有人只说e的数学含义,有人只说自然的表层意思,不能很好的解读e与自然之间的关系。&br&用公式解读e当然是简洁的,但也不是我喜欢的方式,这样不仅丢失了太多有价值的信息,还会把很多人拒之门外。&br&&br&我相信从大历史尺度,用生活的案例来还原e的全貌,可以让更多人来欣赏e的自然之美。耐心的读完全文,你一定会有惊喜。&br&&br&&br&&br&&br&&b&#以下为补充介绍&/b&&br&&br&&b&对数为什么叫对数?&/b&&br&根据前面所说,纳皮尔将对数命名为Logarithm,拉丁文中logos的意思是『比率』,他用一种几何的方式发现了&b&比例对应&/b&关系。&br&&br&1653年,清代顺治年间,对数传入中国,薛凤祚与波兰传教士穆尼阁编写了《比例对数表》。康熙时的《数理精蕴》解释了『对数』中文名的来源:『对数比例乃西士若往纳白尔所作,以借数与真数&b&对列成表&/b&,故名对数表』。&br&&br&&br&&b&为什么对数发明早于指数?&/b&&br&有趣的是,历史不走寻常路,对数的发明居然是早于指数!&br&这就相当于先发明减法符号,再发明加法符号。&br&&br&1614年,纳皮尔发明了对数和对数表。&br&1637年,法国数学家笛卡儿发明了指数,比对数晚了20多年。&br&1770年,欧拉才第一个指出:“对数源于指数”,这时对数和指数已经发明一百多年了。&br&&br&我认为造成这个现象的原因有三个:&br&&ol&&li&纳皮尔首先发现的是大数运算中有对应比例关系,这种关系可以用来简化计算,而不是考虑求指数逆运算的。&br&&/li&&li&指数运算大家一直用,不过是用自乘的方法算。笛卡尔发明的是指数运算的符号和规则,简化了这种运算。对数和指数是不同目的下的发明,一开始人们就没有意识到两者之间的关系,直到一百多年后,欧拉才把这种互为逆运算的关系明确下来。&/li&&li&后人喜欢把容易的运算说成正运算,难的运算是逆运算,例如加法易,减法难,这是认知路径的先后造成的。&/li&&/ol&我们现代人是这样学习的:&br&先学指数,再学对数,指数是正运算,对数是逆运算。我们直接学习了结论,一开始就明确谁正谁逆。但其实两者互为逆运算,谁做正都行。&br&欧拉发现两者关系后,人们在教授数学时,为了认知体验更好,把简单的指数放到了前面,不容易理解的对数则放到了后面。&br&&br&这就是后人才有的疑惑,就像亚里士多德认为利息的不自然,中国人奇怪“货币”有贝字一样,因为历史断层,我们也会惊讶于指数的发明居然会晚于对数。&br&&br&&br&&b&后续阅读&/b&&br&&ul&&li&干扰昆虫导航会发生什么样的趣事:《&a href=&/question//answer/& class=&internal&&既然昆虫有趋光性,为什么昆虫不齐刷刷地奔向太阳?&/a&》&br&&/li&&li&发明利息是处于什么样的时代背景:《&a href=&/question//answer/& class=&internal&&为什么会有国家?&/a&》&br&&/li&&li&无限的指数型增长会引发什么陷阱:《&a href=&/question//answer/& class=&internal&&为什么春秋时大国间的战争还是争霸战争为主,到了战国就转向更残酷的灭国统一战争?》&/a&&/li&&li&百家争鸣是如何幻化成昙花一现的:《&a href=&/question//answer/& class=&internal&&怎么评价重农抑商政策对中国传统社会的影响?&/a&》&br&&/li&&/ul&&br&&br&&br&&b&推荐阅读&/b&&br&本文力求通俗,没用数学公式,但这样e更多的美就无法展现,目前所讲的仅仅是九牛一毛而已。在数学家的眼睛里,还可以看到e有无穷多的美妙特性。&br&有高等数学或数学分析基础的人可以系统阅读下面3本书:&br&&ul&&li&马奥尔的《&a href=&///?target=http%3A///subject/4605553/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&e的故事&i class=&icon-external&&&/i&&/a&》&br&&/li&&li&陈仁政的《&a href=&///?target=http%3A///subject/1311879/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&不可思议的e&i class=&icon-external&&&/i&&/a&》&br&&/li&&li&堀场芳数的《&a href=&///?target=http%3A///subject/1554233/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&e的奥秘&i class=&icon-external&&&/i&&/a&》&br&&/li&&/ul&&br&我认为读数学史更能激发对数学的兴趣,下面的资料推荐阅读&br&&ul&&li&《&a href=&///?target=http%3A///subject/1277169/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&古今数学思想&i class=&icon-external&&&/i&&/a&》4卷册&br&&/li&&li&《&a href=&///?target=http%3A///subject/1428309/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&数学大师&i class=&icon-external&&&/i&&/a&》&br&&/li&&li&《&a href=&///?target=http%3A///subject//& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&天才引导的历程&i class=&icon-external&&&/i&&/a&》&br&&/li&&li&《&a href=&///?target=http%3A///subject/1049136/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&数学:确定性的丧失&i class=&icon-external&&&/i&&/a&》&br&&/li&&li&还有罗辑思维推荐的《&a href=&///?target=http%3A///subject/1322358/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&费马大定理&i class=&icon-external&&&/i&&/a&》&br&&/li&&/ul&&br&&br&&br&都看到这里了,这场思想马拉松能跑下来可真不容易啊!&br&给这篇长文、也给自己点个赞吧!&br&&br&&br&&br&&b&以下是不完整参考资料,有兴趣的可以阅读&/b&&br&&ol&&li&&a href=&///?target=http%3A//www.monetary.org/a-brief-history-of-interest/2010/12& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&A Brief History of Interest&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//plus.maths.org/content/have-we-caught-your-interest& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&Have we caught your interest?&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A///table_of_logarithms_001.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&A Description of The Admirable Table of Logarithms&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//classics.mit.edu/Aristotle/politics.1.one.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&The Internet Classics Archive&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A///a/381196.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&那些货币金融史上的神人&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//9yls.net/8533.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&《数学传播》- 对数与约翰.纳皮尔(John Napier)&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//sx.fjjy.org/jiaoyanketin/web2/39.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&中学数学与数学美&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//www./story/kxjqw/253455.shtml& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&对数传奇:化乘为加&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A///AMuseum/math/3/3_16/3_16_1003.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&走进无限美妙的数学世界&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//www.eywedu.net/Article/HTML/8907.html& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&纳皮尔&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A///article/55381/& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&e,一个常数的传奇&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//math./course/gdds/logarithm.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&交通大学,代数学分支,对数&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A///file/JYPT/JYPT4/shengchun/KWYD/sl_web/%25CA%25FD%25D1%25A7%25B7%25FB%25BA%25C5/7_5F25.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&对数符号&i class=&icon-external&&&/i&&/a&&br&&/li&&li&&a href=&///?target=http%3A//jpkc./jp2005/17/dzjc/chapter/chapter9/chapter9_3.htm& class=& wrap external& target=&_blank& rel=&nofollow noreferrer&&几种简单平面势流的叠加势流&i class=&icon-external&&&/i&&/a&&/li&&/ol&
好问题,让我尝试不用公式,用跨越7000年人类文明的方式,来解读e的自然之美,争取有中学基础的人就能看懂。 e有时被称为自然常数(Natural constant),是一个约等于2.……的无理数。 以e为底的对数称为(Natural logarithm)…
外交工作大都涉密,因此外交工作人員跟其它部門的普通公務員不一樣,用我們一位外交老人的話通俗來說:外交工作人員是什麼,就是不穿軍裝的軍人!&br&&br&所以外交工作人員都有鐵的紀律:不該問的不問,不該說的不說。&br&&br&我們的工作很多都是只能做不能說的,既然你這麼想知道“外交黑話”,那麼今天就簡單談談新聞裡常常提到的“夥伴”吧。&br&&br&現將張寒寺關於外交行話中「夥伴」一詞的文章摘錄如下:&br&&br&&br&&br&——————————————————————&br&&br&原文鏈接:&a href=&///?target=http%3A///a/45868_0.shtml& class=& external& target=&_blank& rel=&nofollow noreferrer&&&span class=&invisible&&http://&/span&&span class=&visible&&/a/201407&/span&&span class=&invisible&&21/.shtml&/span&&span class=&ellipsis&&&/span&&i class=&icon-external&&&/i&&/a&&br&&br&&i&《戰略合作夥伴和全面戰略合作夥伴有什麼區別?》&br&&br& ——作者:張寒寺&br&&br&中國是從1996年開始給建交的國家分檔次。&br&&br&起步檔是“單純建交”,然後是“睦鄰友好”,再其次是“夥伴”,更高級的就是“傳統友好合作”了。&br&&br&那麼接下來要說的就是第三檔裡的各種“夥伴”。&br&&br&先簡單列一個表,幫助大家了解中國的各種“夥伴”都有哪些國家。&br&&br&建設性戰略合作夥伴關係:美國&br&&br&戰略互惠關係:日本&br&&br&全面戰略協作夥伴關係:俄羅斯&br&&br&全天候合作夥伴關係:巴基斯坦&br&&br&全面戰略合作夥伴關係:越南、巴基斯坦、法國、巴西&br&&br&全面戰略夥伴關係:英國、意大利、西班牙、丹麥、馬來西亞、非盟、葡萄牙、南非、白俄羅斯、印度尼西亞、阿根廷、委內瑞拉&br&&br&全方位戰略夥伴關係:德國&br&&br&戰略合作夥伴關係:韓國、埃及、印度、土耳其、斯里蘭卡&br&&br&戰略夥伴關係:波蘭、哈薩克斯坦、東盟、墨西哥、歐盟、尼日利亞、加拿大&br&&br&全面合作夥伴關係:克羅地亞、孟加拉國、秘魯、智利、羅馬尼亞、荷蘭 &br&可信賴合作夥伴關係:埃塞俄比亞&br&&br&合作夥伴關係:烏茲別克斯坦、匈牙利、波蘭&br&&br&夥伴關係:阿爾及利亞、蒙古&br&&br&中國之所以有這麼多夥伴,還分了這麼多等級,有一個很重要的原因就是中國奉行的是“不結盟”的外交政策,所以中國沒有盟友,但沒有盟友不代表來者不拒,也不代表一視同仁。&br&&br&這就好比你奉行“不結婚”的人生信條,但你也會有“最愛的那個女朋友”、“一般喜歡的女朋友”、“將將夠用的女朋友”和“想起來就

我要回帖

更多关于 两亿现金 的文章

 

随机推荐