如图在多面体abcdef中中,底面abcd是梯形。且ab等于dc等于cb等于1/2ab等于a。在直

百度题库_智能考试题库_让每个人都能高效提分的智能题库
职业资格类
职业资格类
百度题库旨在为考生提供高效的智能备考服务,全面覆盖中小学财会类、建筑工程、职业资格、医卫类、计算机类等领域。拥有优质丰富的学习资料和备考全阶段的高效服务,助您不断前行!
京ICP证号&&
京网文[3号&&
Copyright (C) 2017 Baidu当前位置:
>>>如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯..
如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是锐角,且平面ACEF⊥平面ABCD.(1)求证:;(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.
题型:解答题难度:中档来源:不详
(1)详见试题解析;(2).试题分析:(1)证明线线垂直,可转化为证明线面垂直.要证,只要证平面,由已知平面ACEF⊥平面ABCD,故由面面垂直的性质定理知,只要证.在等腰梯形ABCD中,由已知条件及平面几何相关知识易得;(2)连结交于,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF所成的角.在中由锐角三角函数可求得的长,再在中由锐角三角函数即可求得的余弦值.试题解析:(1)证明:在等腰梯形ABCD中,∵AD=DC=CB=AB,∴AD、BC为腰,取AB得中点H,连CH,易知,四边形ADCH为菱形,则CH=AH=BH,故△ACB为直角三角形,.&&&&&&&&&&&&& 3分平面平面,且平面平面,平面,而平面,故.&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 6分(2)连结交于,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF所成的角.&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 9分设AD=DC=BC=,则MD=,.依题意,,,在中,,∵=AM,四边形AMEF为平行四边形,,,.&&&&&&&&&&&&&&&& 12分
马上分享给同学
据魔方格专家权威分析,试题“如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯..”主要考查你对&&点到直线、平面的距离&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
点到直线、平面的距离
点到直线的距离:
由点向直线引垂线,这一点到垂足之间的距离。
点到平面的距离:
由点向平面引垂线,这点到垂足之间的距离,就叫做点到平面的距离。 求点面距离常用的方法:
(1)直接利用定义①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.(2)利用两平面互相垂直的性质如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.(3)体积法其步骤是:①在平面内选取适当三点和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由求出.这种方法的优点是不必作出垂线即可求点面距离,难点在于如何构造合适的三棱锥以便于计算.(4)转化法:将点到平面的距离转化为直线与平面的距离来求.(5)向量法:
发现相似题
与“如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯..”考查相似的试题有:
809702803702843592393048809158795483当前位置:
>>>在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段A..
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少?
题型:解答题难度:中档来源:四川省期末题
解:(1 )在梯形ABCD 中,AD ∥BC ,AB=DC=AD=6 ,∠ABC=60 °, ∴∠A= ∠D=120 °, ∴∠AEB+ ∠ABE=180 °-120 °=60 °.∵∠BEF=120 °,∴∠AEB+ ∠DEF=180 °-120 °=60 °,∴∠ABE= ∠DEF .∴△ABE ∽△DEF .&∴y 与x 的函数表达式是y= x (6-x )=-x2+x ; (2 )y=- x2+x=-&&(x-3 )2+&&.∴当x=3 时,y 有最大值,最大值为&&.
马上分享给同学
据魔方格专家权威分析,试题“在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段A..”主要考查你对&&相似三角形的性质,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
相似三角形的性质求二次函数的解析式及二次函数的应用
相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段A..”考查相似的试题有:
8734210765192791316499984484168326百度题库旨在为考生提供高效的智能备考服务,全面覆盖中小学财会类、建筑工程、职业资格、医卫类、计算机类等领域。拥有优质丰富的学习资料和备考全阶段的高效服务,助您不断前行!
京ICP证号&&
京网文[3号&&
Copyright (C) 2017 Baidu扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.(1)若G点是DC中点,求证:FG∥面AED.(2)求证:面DAF⊥面BAF.
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
(1)如图,∵点G是DC中点,AB=CD=2EF,AB∥EF,∴EF∥DG且EF=DG,∴四边形DEFG是平行四边形,∴FG∥DE…(4分)又FG?面AED,ED?面AED,∴FG∥面AED.(6分)(2)∵平面ABFE⊥平面ABCD,平面ABFE∩平面ABCD=AB,AD⊥AB,∴AD⊥平面ABF…(8分)又AD?平面DAF…(10分)∴面DAF⊥面BAF…(12分)
为您推荐:
(1)点G是DC中点,易证四边形DEFG是平行四边形,从而FG∥DE,利用线面平行的判断定理即可得到FG∥面AED;(2)依题意,可证AD⊥平面ABF,利用面面垂直的判断定理即可证得面DAF⊥面BAF.
本题考点:
平面与平面垂直的判定;直线与平面平行的判定.
考点点评:
本题考查直线与平面平行的判断与平面与平面垂直的判定,掌握线面平行的判断定理与面面垂直的判定定理是基础,属于中档题.
扫描下载二维码

我要回帖

更多关于 如图在梯形abcd中 的文章

 

随机推荐