一个人的基因组dna的提取为什么是一次性的

一个人基因组中大约有多少单核苷酸突变_百度知道
一个人基因组中大约有多少单核苷酸突变
我有更好的答案
大多数位于蛋白的非编码区.SNP是人类基因组中密度最大的遗传标记,发生频率较高.人类基因组中总共有300万个SNP,一般认为SNP与点突变的区别在于SNP出现频率高于1%,被认为是继微卫星之后的新一代遗传学标记.在医学遗传学、药物遗传学、疾病遗传学、疾病诊断学、以及人类进化等研究领域都有着很高的研究价值和应用前景单核苷酸多态性(Single Nucleotide Polymorphisms,SNPs),即指由于单个核苷酸碱基的改变而导致的核酸序列的多态性,平均每1000个碱基中就有一个SNP.SNP的分布不均匀,非转录区要多于转录区
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。我今天要采集一个人的血液验DNA,用一次性针刺破她的手指,我拿试纸在她手指上取了几滴血液。当时戴了_百度宝宝知道肿瘤分子检测的十八般武器都有啥?
分子检测:肿瘤抗击战的前哨侦察兵
兵欲善其事,必先利其器
对肿瘤这场漫长的战争中,如果把药物比作是武器弹药,那么引导这些炮弹准确攻击而少误伤正常细胞、监控预后复发等等检测技术就可比作是前哨侦察兵了,或者可以形象地比作是“眼睛”,可见分子检测手段的重要性。不夸张地说,抗癌这场战争将不断受益于分子检测技术的进步。
这篇帖子,我们来对肿瘤分子检测技术做个梳理,对它们的优缺点也做个评述。首先需要明确的是,没有完美的检测技术,只有针对特定情况和特定目的最合适的检测技术。
我们首先从遗传信息的传递法则来看目前的诊断技术,生命科学的中心法则是,DNA用来承载遗传信息,DNA转录成为RNA,RNA再翻译成为蛋白质,我们常见的检测技术,基本上就是检测这三种生物大分子的序列信息、表达水平等。
由于RNA非常不稳定,很容易降解,因此目前对RNA进行检测多数在科研阶段,但检测RNA的好处是发现新的融合基因。总之目前主流的检测技术,基因测序是对DNA信息进行测定,免疫组化等是对蛋白质水平进行测定。
在上图我们可以看到,虽然DNA转录为RNA,再翻译成蛋白质,但是如果没有DNA水平的扩增,也可能存在蛋白质高表达的情况,具体可能的原因很多。
这里只是让大家记住一个结论,如果一个药物是靶向肿瘤细胞的蛋白的,如西妥昔单抗,则最好使用组织样本检测EGFR蛋白水平,而不只是通过DNA水平的EGFR扩增判断是否对药物敏感,DNA水平不扩增,蛋白也可能高表达。
免疫组化,是应用免疫学的原理,使用特异性的抗体检测目标组织样本中某一类型蛋白水平的技术,需要注意的是免疫组化检测的只能是组织样本,如果目标蛋白表达量高可以表现出较为深的颗粒性着色。免疫组化技术已经非常成熟,很多蛋白都有特异的商业化抗体。一般对一个肿瘤进行定性,要检测一系列蛋白的表达情况,根据这些来对肿瘤进行定性。
免疫组化检测组织样本中蛋白表达水平
免疫组化的结果解读有几种解读标准:
如果是3个加号(+)认为是强阳性,
一个加号(+)和一个减号(-)一般是阴性,
介于二者之间的两个加号(+)认为是弱阳,
弱阳性有时需要再次使用FISH进行验证。
免疫组化主要检查组织样本的某些蛋白表达水平,主要用于肿瘤的分型。另外也根据一些蛋白表达量,来判断某些靶向药物的疗效。比如检查Her2的表达来指导曲妥珠单抗,检查EGFR表达来指导西妥昔单抗和帕尼单抗的使用、检查MET高表达来看卡博替尼的使用等。
一般通过检测某些蛋白表达量高低指导的靶向药物比较少,而且某些蛋白表达水平与靶点药物疗效没有确凿性的关系。如血管内皮生长因子(VEGF)的表达量高低,并不能完全与贝伐单抗的疗效一致。血管内皮生长因子受体(VEGFR)的表达量并不能完全判断靶向药物的疗效。很多时候表达量较低,也是可以使用靶向药物的,如阿西替尼、阿帕替尼等。
原位免疫荧光杂交FSIH
原位免疫荧光杂交用来判断基因的融合,基因的断裂和重排,另外如存在染色体拷贝数增多也是可以使用FISH的,而且目前而言FISH是一个金标准。
原位免疫荧光杂交技术
FISH的原理是,使用红绿两种荧光探针,分别标记某个基因的两端,如果一个基因的中间没有发生断裂,则红色荧光和绿色荧光靠近,表现的是一种黄色荧光信号,或者红绿两种荧光靠的很近。
如果基因发生了断裂,如ALK与EML4基因融合,ALK基因中间断裂,则分别与ALK基因两端结合的红色荧光探针和绿色荧光探针分开,通过计数出现荧光分离的细胞数目,即可判断是否发生了基因断裂。
FISH的检测方法比较成熟,但是操作比较复杂,涉及较多的人工,而且检测一个基因或染色体的重排都在3000元左右。不管是ALK基因的融合,还是脑胶质瘤的1p19q染色体重排,操作流程和价格都是类似的。
一代基因测序技术
一代测序技术出现于上一世纪,是英国科学家sanger发明的,目前仪器和技术比较成熟,特点是一次性可以检测800-1000个碱基的长度,准确度较好,完成一个测序反应的价格在20元左右。
但是缺点是通量低,如果是一次性检测几百个基因,几万个基因,这就该使用二代基因检测技术了,尤其是肿瘤具有异质性的特点,需要一次性对肿瘤组织里提取的DNA进行几千次、上万次的测序,对基因突变频率给出相应的数值,这就是不是一代检测技术可以完成的了,只能使用二代基因检测技术。
但是很多医院里的基因测序仪器都是一代的,主要是仪器价格低,比较成熟和稳定,但是需要知道的是,一代基因检测技术不能检测基因突变频率,而且由于肿瘤存在异质性,所以容易漏检低频的基因突变。
一代基因测序技术(Sanger测序法)
二代基因检测技术
二代基因检测技术也称之为高通量测序技术,主要原理是通过超声波将DNA达成100-200bp的片段,然后通过一定的处理将每一个片段扩增成一个分子簇,再使用相应的技术检测每个分子簇合成一个碱基时释放的荧光信号,或者是电化学信号。
可以实现较高的通量,目前较为新的检测技术,可以将人的基因组信息全部测完,价格已经降低为1万元以下。
但是需要注意的是,人的全基因组测序是检测人的正常细胞的DNA序列信息,测序深度一般是30-50乘,而且只做基础的简单的分析,不会进行较为复杂的生物信息学分析。
由于肿瘤具有异质性的特点,对肿瘤组织检测深度只有几十乘是不够的,有时要测几万乘,而且后面涉及到专业的分析和解读。所以这里有个误区,即为什么测一个人的基因组不到1万,检测几十个基因,几百个基因也得几千元,区别是测序深度和后续的生物信息学分析、报告解读。
二代基因检测技术的原理
未来一定是二代基因检测技术的天下,当然目前有一个短板是,对血液里肿瘤细胞裂解释放的DNA检测的灵敏度不是很高,原因是血液里肿瘤细胞裂解释放的DNA浓度很低,只占1%左右,大部分是正常细胞裂解释放的DNA,而且二代基因检测技术还有测序深度越高,出现测序错误的问题,这个并不能通过单独加大测序深度来解决。
吉因加公司的专利技术可对测序错误进行过滤,数据显示是极大地提高了血液检测肿瘤细胞DNA的灵敏度。
PCR的祖祖辈辈
PCR技术也比较常见地用在肿瘤分子诊断领域。经常容易看到的一些EGFR的突变信息是使用QPCR(荧光定量PCR)检测的。我在研究生期间经常摆弄这种仪器,QPCR的结果是一些扩增曲线,通过设置阴性对照,阳性对照来判断是否存在特定的突变位点。QPCR被称为是第二代PCR技术,第一代PCR是比较传统的PCR扩增技术,这个是获得了诺贝尔奖的一项发明。
ARMS-PCR的全称是突变扩增系统,厦门艾德公司具有一些专利,而且还有一些试剂盒获批对相应的突变基因位点进行检测,ARMS-PCR,比传统的PCR技术灵敏度和特异性会高很多,但其也是只能检测有限基因的已知位点。
数字PCR的检测原理示意图
ddPCR(微滴式数字PCR)是第三代PCR技术,原理是先将模板分子稀释,然后将每一个模板包裹到一个液滴里面(油包水),而且是每个液体只包裹了一个模板DNA分子,通过反应,液滴的DNA分子被放大了百万倍以上。通过对这些液滴进行检测可知道哪些液滴里有DNA模板分子,哪些里是没有的,进而实现绝对的定量。进行可以做到极为高的灵敏度和准确度,也就是几万个分子里有一个突变的分子DNA,也可以检测出来。
这种方法比较适合对血液样本的已知基因突变位点进行检测,如EGFR基因的T790M,ALK基因克唑替尼耐药后出现的守门基因突变等,数字PCR的原理还是PCR,检测的是基因的已知突变位点,但是它的极高的灵敏度是特点,比较适合血液样本检测EGFR、ALK的那些二次突变位点,进而知道后续的用药,这里我们也呼吁基因检测公司考虑开发相应的检测产品。
如本帖开始所说,没有任何一种检测技术是完美的,也就是既能保证检测的全面,灵敏度有很高,或者未来会有,现在还没有。
下图是几种分子检测技术的灵敏度:
Sanger(一代测序)的灵敏度是10%,
二代基因检测技术的灵敏度是2%,
普通数字PCR的灵敏度是1%,
ArmsPCR的灵敏度在0.1%,
数字PCR的灵敏度可以达到0.01%或者更低。
不同分子检测技术的灵敏度
一般而言,如果有组织样本,自然优先使用二代测序,因为癌细胞就在哪里,肯定可以测到突变信息,而且二代测序技术同时测几十个基因,几百个基因价格已经降低为五六千元,基本上是比较平民化的价格了,由于肿瘤的异质性,以及低频基因突变的存在,最重要的是组织样本很珍贵,用了以后再取就得又让患者受苦,所以最好还是测的全面一些,即使用二代基因检测技术。
对于血液样本,即晚期肿瘤患者,或者不适宜取组织样本的患者。抽血检测肿瘤细胞裂解释放的DNA,这个时候就存在一定的取舍,因为ctDNA的浓度较低,二代检测技术不一定都能测到。
但是ARMS-PCR等技术只能检测有限基因的已知位点,而且对于一些基因突变的位置信息还检测不到(如C797S和T790M是顺式的还是反式的?)所以这个需要综合来考虑,即根据患者的治疗过程,选择合适的检测技术,如果就是只想检测EGFR的T790M,或者ALK的守门基因耐药突变,那就是用ARMS-PCR,或者后面的数字PCR,如果根本不知道是什么导致的耐药,甚至什么基因都不清楚,那就使用二代基因测序。
2016年召开的肺癌会议上,吴一龙教授宣读了液体活检的专家共识,专家共识的要点如下所示:
1.检测已知的、单个临床可药物抑制的靶点,液体活检技术推荐ARMS方法;检测已知的、多个平行临床可药物抑制的靶点,液体活检技术推荐NGS(高通量测序)方法。
2.用于发现未知基因,探索疗效监测、预后判断和发现耐药机制等,液体活检技术建议使用NGS。
3.液体活检包括循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA)可能用于肺癌早期诊断和复发监测,但目前仅限于科研探索。
4.NGS用于临床研究,需平衡患者利益、伦理要求和科学发现之间的关系,以患者利益为至上。
癌度有话说
通过上面的文章我们可以了解到,目前来看,二代测序技术已经是主流的肿瘤分子检测技术,但是它在检测血液样本时需要在灵敏度上做些提升。这也并不只是加大测序深度,或者需要在其他方面做些创新,如吉因加公司的这种对测序错误进行的纠错等。目前来看,如果是检测特定基因的明确的位点,对灵敏度要求较高,则还是建议使用ARMS-PCR,以及数字PCR。
天下的武器哪一种最好,剑是兵中之王,但是也有缺点,那就是短啊。如果本领不高,遇到个拿长柄大砍刀的也就是悲剧了。或者我们也可以用剑来形容二代检测技术,它是肿瘤分子检测技术里一个威力极大的武器,但是其并不是完美无缺,当然在使用上也需结合患者的治疗状况,检测的目的,与其他检测技术配合。
注:以上观点不构成任何治疗建议,仅供肿瘤患者和家属参考。
癌度APP是专注于癌症相似病友检索、防癌和抗癌知识交流与分享的软件,通过癌症发生的基因突变、用药和治疗、预后康复等多个参数指标,对癌症患者的相似度进行精准的运算,为用户推荐病情和治疗相似的病友,相互交流治疗和康复经验。相似度检索算法由来自抗癌第一线的肿瘤精准医疗专家开发,具有排他性的专利保护。基因检测、靶向药物、PD-1抗体、副作用和心理调节等等,万千相似病友的经验和教训最值得信赖和参考。
癌度——专注于癌症患者相似度检索。度人先自度,度癌用“癌度”。
本文来源癌度,作者:翱宇,转载请注明来源,否则将保留追究其法律责任的权利。
责任编辑:
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
今日搜狐热点

我要回帖

更多关于 人的基因组大小 的文章

 

随机推荐