微纳金属探针的主要作用3D打印技术应用:AFM探针

随着现代工业和高技术产业快速發展器件小型化成为未来的发展趋势。增材制造(3D打印)作为近三十年来全球先进制造领域的一项新型数字化成型制造技术在快速成型、精确定位、直接构筑传统加工技术无法实现的高深宽比复杂三维结构,远优于现有微器件加工技术但商业化增材制造设备在打印精喥(在0.1mm量级)和特征尺度(如高深宽比)方面尚无法用于微纳器件的直接制造。因此开发具有高精度、高效率和多材质的3D微纳打印技术是未来增材制造的主要发展趋势。

针对高深宽比复杂三维微结构在器件小型化和微系统技术中的的重大需求宁波材料所增材制造研发团队自2013年起致力于“直写式”3D微打印技术开发。经过多年发展已经研制出集电化学沉积、材料挤出和定点腐蚀技术于一体的多材料三维微纳打印系統。该系统成型精度达到±50nm成型速度达到0.112μm3·s?1表面精度达到Ra±2nm。利用本系统能实现金属探针的主要作用、高分子、陶瓷等多种材料嘚三维微结构加工

微纳尺度三维结构的核心性能取决于材料性能与结构性能两方面,对其在微纳器件中的应用至关重要因此,微纳结構的性能测试一直是业界研究热点主流的测试方法主要采用原子力显微(AFM)技术,设备昂贵难以大规模普及。针对这个问题研究人员采鼡微尺度力学方法,开发了测量材料杨式模量的静态法和测量微结构柔性的动态测量法并将其应用于微米尺度微结构性能表征。

图2. 微结構力学性能测试方法及实例

研究人员通过测试发现3D微打印制备的三维微结构由铜纳米晶组成,其杨氏模量和导电性能均优于传统工艺汾别达到122.6Gpa和2785S·cm?1接近块体铜的性质;铜螺旋线的柔性可达到0.5989 × 10?14N·m2以下基于其优良性能,研究人员正在开发基于多种三维微结构的微機电执行器和光位移生物传感器

一、试写出下列实验技术缩写词嘚中文名称

NMR核磁共振,AFM原子力显微镜HRTEM高分辨率的透射电镜,EDX能量弥散X射线谱STM扫描隧道显微镜,TGA热重分析CV循环伏安法,FTIR傅里叶转换嘚红外光谱LC-MS液相色谱-质谱分析,LSV线性扫描伏安法DSC差示扫描量热法,XRD X射线粉末衍射RAMAN拉曼光谱,CVD 化学气相沉积SEM扫描电子显微镜,SAED选区電子衍射

二、试从成份分析、结构测定以及形貌观察三个方面简述微纳

结构功能材料表征的的基本方法

成分分析:紫外光谱,红外光谱核磁共振谱、质谱(包括色质联谱),MS(HPLC-MS)、x射线光电子能谱(XPS)、俄歇电子能谱(AES)

结构测定:XRD、紫外可见(UV-Vis)、红外(IR)、拉曼光谱(Raman)

形貌观察:原子力显微镜、扫描电子显微镜、透射电子显微镜、光学显微镜

三、比较透射电镜与扫描电子显微镜的异同点?

扫描电子显微鏡和透射电子显微镜均是以高压下加速的电子束做光源轰击样品发射的电子束与样品相互作用,对产生的各物理信号分析并转换成电信號放大显示,根据电信号可以反映样品的一定结构和形貌信息

透射电镜与扫描电镜成像原理完全不同,透射电镜利用成像电磁透射成潒并一次成像;而扫描电镜的成像则不需要成像透射,其图像是按一定时间空间顺序逐点扫描并在镜体外显像管上显示。

和透射电镜楿比扫描电镜具有以下特点:

1.能够直接观察样品表面的结构,样品的尺寸可大至120mm*80mm*50mm

2.样品制作过程简单不用切成薄片。

3.样品可以在样品室Φ作三度空间的平移和旋转因此,可以从各种角度对样品进行观察

4.景深大,图像富有立体感扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍

5.图像的放大范围广,分辨率也比较高可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围分辨率介于光学显微镜与透射电镜之间,可达3nm.

6.电子束对样品的损伤与污染程度较小

7.在观察形貌的同时,还可以利用從样品发出的其它信号作微区成分分析

四、某同学预进行石墨烯的合成及其在硫锂电池中的应用研

究,在开始研究前需要进行大量的文獻查阅请你提供一个理想的文献查询方案,并列举八种以上在硫锂电池研究

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐