配位共价键键理论问题

第十章 化学键与分子结构
§本章摘要§
<font color="#.离子键理论
     
<font color="#.共价键理论
     
<font color="#.金属键理论
<font color="#.分子间作用力
<font color="#.离子极化学说简介
       
§2. 共价键理论  
 四 杂化轨道理论
分子中键角为 120°, NH4+离子中键角为109°28 ′, 在成键过程轨道之间的夹角怎样形成的,如何解释构型的存在呢?CH4
为什么是正四面体结构?这些问题用一般价键理论难以解释. Pauling 1913年发表 V.B. 法,提出杂化轨道理论,在解释构型方面非常成功.
<font color="#.
1) 杂化概念
  在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。
  形成CH4分子时,中心碳原子的 2s 和 2px, 2py,
2pz等四条原子轨道发生杂化,形成一组(四条)新的杂化轨道,即 4 条
杂化轨道,这些杂化轨道不同于
s 轨道,也不同于 p 轨道,有自己的波函数、能量、形状和空间取向。
2) 杂化轨道的数目, 形状, 成分和能量
  在杂化过程中形成的杂化轨道的数目等于参加杂化的轨道的数目. CH4 中参加杂化的有 2s, 2px,
2py, 2pz 4条原子轨道, 形成的杂化轨道也是 4 条: 4 条完全相同的
  杂化实质是波函数Ψ线性组合, 得到新的波函数, 即杂化轨道的波函数. 例如: s 和 px 杂化, 产生两个杂化轨道,
分别用Φ1和Φ2表示
  杂化轨道中有波函数,当然也有自身的轨道角度分布:
  在sp杂化轨道中, s 和 p 的成份各 1/2,
杂化中, s 占1/3,p占2/3。
  p 的成份大时,轨道分布向某方向集中,s 无方向性,故 比sp集中,在成键时重叠程度较大,键较强,体系能量低,这就是杂化过程的能量因素。
  s 和 p 之间形成的杂化轨道,其能量高于 s ,低于 p ,但p 的成份越多能量越高。
      
3) 杂化轨道的种类
a) 按参加杂化的轨道分类
  s-p 型: sp 杂化、杂化和杂化
  s-p-d型: d杂化、
b) 按杂化轨道能量是否一致分类:
  等性杂化, 如C 的杂化:
4 个杂化轨道能量一致。
  形成 3 个能量相等的杂化轨道,属于等性杂化。
  判断是否是等性杂化,要看各条杂化轨道的能量是否相等,不看未参加杂化的轨道的能量。
4) 各种杂化轨道在空间的几何分布
2. 用杂化轨道理论解释构型
1) sp 杂化
  BeCl2 分子 直线形,用杂化轨道理论分析其成键情况,说明直线形的原因。
  2 条sp杂化轨道是直线形分布,分别与 2 个 Cl 的3p轨道成键,故分子为直线形。
  二氧化碳,直线形 C sp 杂化 ,C 与 O 之间 sp-2px 两个键,
所以, O-C-O 成直线形。
  C中未杂化的py与两侧 O 的两个py沿纸面方向成大π键,
C 中未杂化的pz与两侧 O 的pz沿垂直于纸面的方向成π键,故 CO2 中,
  BCl3 平面三角形构型, B的 3 个杂化轨道呈三角形分布,分别与
3 个 Cl 的 3p 成σ键,分子构型为三角形。属于
4 ) s-p-d 杂化
  PCl5 三角双锥, P
杂化轨道呈三角双锥形分布,分别与 5 个Cl 的 3p成σ键。空间图形为:
        
5) 不等性杂化
  单电子占据的
杂化轨道分别与 H 的1s成σ键,孤对电子占据的
单独占据四面体的一个顶角. 由于孤对电子的影响, HNH键 角小于 109°28′, 为 107°18′.
  在等性杂化中由分子构型(与电子对构型一致)可以直接看出杂化方式。但在不等性杂化中,分子结构当然与杂化方式有关,但要知道孤电子对数,
方可确定分子构型. 关键是电子对构型可以直接标志杂化方式, 故电子对构型非常重要。不等性杂化与配体数小于对数是对应的。有未参加杂化的电子,一般形成键或大键。
3. 杂化理论与价层电子对互斥理论的关系
  1) 电子对构型与杂化类型: 一致  2) 等性、不等性杂化与孤电对数和配体数: 等性, 配位体数 = 杂化轨道数;
不等性, 配位体 = 杂化轨道 - 孤电对 3) 未参加杂化的电子与重键: 未参加杂化的单电子形成重键, 则有 电对数
- 重键数 = 配体数, 如: 乙烯 H2C=CH2,
  价层电子: 1x2 + 4 + 2 = 8, 电对数 = 8/2 = 4, 重键为1, 所以: 配体数(实际形成σ键)
= 4 - 1 = 3, (决定分子为三角形) 或 价层电子数- 未杂化电子数
= 决定分子构型的电子数, 8 - 2 = 6, 配体数(实际形成σ键) = 6/2 = 3, 分子为三角形.共价键_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&共价键[gòng jià jiàn]
共价键(covalent bond),是的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的叫做共价键,或者说共价键是原子间通过共用电子对所形成的相互作用。其本质是重叠后,高概率地出现在两个原子核之间的电子与两个之间的电性作用。需要指出:虽然存在轨道重叠,但通常不算作共价键,而属于。共价键与离子键之间没有严格的界限,通常认为,两元素差值大于1.7时,成离子键;小于1.7时,成共价键。共价键与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,与离子键差不太多或有些时候甚至比离子键强。本质是在原子之间形成共用电子对。同一种的元素的原子或不同元素的都可以通过共价键结合,一般共价键结合的产物是分子,在少数情况下也可以形成晶体。于1916年最先提出共价键。在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。在中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会之间相互作用而形成整个分子共用的电子轨道。[1]外文名covalent bond本&&&&质原子间的静电作用分&&&&类σ键,π键,配位键等
在,化学还没有从自然哲学中分离的时代,者对化学键有了最原始的设想,(Empedocles)认为,世界由“气、、土、”这四种元素组成,这四种元素在“爱”和“恨”的作用下分裂并以新的排列重新组合时,物质就发生了质的变化。这种作用力可以被看成是最早的化学键思想。
随后,原子论者设想,与原子间,存在着一种“”,也可以说是粗糙的表面,以致它们在相互碰撞时黏在一起,构成了一个稳定的聚集体。德谟克利特对化学键的设想相比于之前的自然哲学家,是更加先进的,他剔除了此类设想中的唯心主义因素。
中世纪的J.R.格劳伯则提出了物质同类相亲、异类相斥的思想。其后还出现了关于物质结合的亲和力说,认为物质的微粒具有亲和力,由此互相吸引而结合在一起。总之,人们关于化学键朦胧的认识,启发了后来的化学家。18世纪,燃素(phlogiston)的概念进入了化学,并为恩斯特·施塔尔(Ernst Stahl)、(Henry Cavendish)和(Joseph Priestley)等先进的化学家所接受。当时,已经提出,他们希望把原子间的作用力和牛顿力学结合起来,给出的解释,但限于当时的条件,这无疑是无法完成的。[2]
1916年,德国化学家(A.Kossel)在考察大量事实后得出结论:任何元素的原子都要使最外层满足8电子稳定结构,但科塞尔只解释了的形成过程,并没有解释共价键的形成。[3]
1919年,化学家首次使用“共价”来描述间的成键过程
“(原文)we shall denote by the termcovalencethe number of pairs of electrons which a given atom shares with its neighbors[4]”(我们应该用“共价”一词表示原子间通过形成的作用力)
1922年,(N.Bohr)从量子化的角度重新审视了卢瑟福的核式模型,这为化学家对化学键的认识,提供了全新的平台,他认为电子应该位于确定的轨道之中,并且能够在不同轨道之间跃迁,定态跃迁可以很好的解释的各个谱线。[5]
1923年,美国化学家(G.N.Lewis)发展了科塞尔的理论,提出共价键的电子对理论[3]。路易斯假设:在分子中来自于一个原子的一个电子与另一个原子的一个电子以“”的形式形成原子间的化学键。这在当时是一个有悖于正统理论的假设,因为表明,两个电子间是相互排斥的,但路易斯这种设想很快就为化学界所接受,并导致原子间相反假设的提出。[2]
1924年,路易斯·德布罗意(Louis de Broglie)提出的假说,建立了一个原子的数学模型,用来将电子描述为一个三维波形。在数学上不能够同时得到位置和动量的精确值。
1926年,提出量子力学的波动方程,它可以直接用来解释化学键的“形成”和“断裂”,这成为量子化学最初的开端。[2]
1927年,沃尔特·海特勒(W.H.Heitler)和(F.London)用量子力学处理氢分子,用近似方法算出了氢分子体系的,首次用量子力学方法解决共价键问题。在这一方法的推广中诞生,他们研究共价键的方法就被称为HL法。[3]
1928年,(Enrica Fermi)提出了一个基于的单电子密度模型试图解决问题。[6]之后,道格拉斯·哈特里(Douglas Rayner Hartree)运用,将体系电子的分解为若干个单电子哈密顿算子的简单加和,进而将体系多电子波函数表示为单电子波函数的积,改进这一模型,提出哈特里方程。[7]
1930年,哈特里的学生(Fock)与约翰·斯莱特(John Clarke Slater)完善了哈特里方程,称为哈特里-福克方程(HF)。50年代初,斯莱特得到了HF的近似波函数:哈特里-福克-斯莱特方程(HFS)[8]。1963年,赫尔曼(F.Hermann)和斯基尔曼(S.Skillman)把HFS应用于函数。[9]
1950年,克莱蒙斯·罗瑟恩(C. C. J. Roothaan)进一步提出将方程中的用组成分子的原子轨道线性展开,发展出了著名的RHF方程,1964年,计算机化学家恩里克·克莱门蒂(E.Clementi)发表了大量的RHF波函数,[10]该方程以及后续的改进版已经成为现代处理量子化学问题的主要方法。
1929年,贝特等提出配位场理论,最先用于讨论过渡金属离子在晶体场中的能级分裂,后来又与结合,发展成为现代的配位场理论。1930年,美国化学家莱纳斯·鲍林(L.C.Pauling)在研究碳的时提出轨道,认为:能级相近的轨道在受激时可以发生杂化,形成新的,其理论依据就是电子的,而波是可以的。他计算出了多种的形状,并因在价键理论方面的突出贡献而获得。[3]
1932年,弗里德里希·洪德(F.Hund)将共价键分为、、三种,使价键理论进一步系统化,与经典的化合价理论有机地结合起来。[3]
同年,美国化学家(Robert S.Mulliken)提出分子轨道理论。认为化合物中的电子不属于某个原子,而是在整个分子内运动。他的方法和经典化学相距太远,计算又很繁琐,一时不被化学界所接受。后经过罗伯特·密立根(Robert A.Millikan)、菲利普·伦纳德(Philipp Lenard)、(Erich Hückel)等人的完善,在化学界逐渐得到认可。[3]
1940年,亨利·希吉维克(H.Sidgwick)和托马斯·坡维尔(Thomas A.Powell)在总结实验事实的基础上提出了一种简单的,用以预测简单分子或离子的立体结构。这种理论模型后经罗纳德·吉列斯比(R.J.Gillespie)和罗纳德·尼霍尔姆(R.S.Nyholm)在20世纪50年代加以发展,定名为,简称VSEPR。VSEPR与理论相结合,可以半定量地推测分子的成键方式与。
1951年,提出,认为,分子中能量最高的分子轨道(HOMO)和没有被电子占据的,能量最低的分子轨道(LUMO)是决定一个体系发生化学反应的关键,其他能量的分子轨道对于化学反应虽然有影响但是影响很小,可以暂时忽略。HOMO和LUMO便是所谓前线轨道。
1965年,美国化学家罗伯·伍德沃德(Rober B.Woodward)与参照福井谦一的前线轨道理论,提出了。分子轨道理论得到了新的发展。[3]
由于计算机技术的迅猛发展,和方法的应用,量子化学与日新月异,对分子结构的推算变得愈发精确期间也诞生了一大批优秀的化学家,据估计,21世纪中期,量子化学还将有新的突破。在共价键的形成过程中,因为每个原子所能提供的未成对是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。[11]
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系[11],是(law of definite proportion)的内在原因之一。除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的,共价键的方向决定着分子的构形。[11]
影响共价键的方向性的因素为轨道伸展方向化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。
均裂与自由基反应
共价键在发生时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,一般在光或热的作用下进行。
异裂与离子型反应
共价键发生时生成正、,例如氯化氢在水中成氢离子和。有机物共价键异裂生成的和负离子是的活泼物种,往往在生成的一瞬间就参加反应,但可以证明其存在。[12]
由共价键异裂引发的反应称,其下又可分为两种
·(electrophilic reaction)
·(nucleophilic reaction)
离子型反应一般在或物质的催化下进行。主条目:
路易斯理论,又称“八隅体规则”、“电子配对理论”是最早提出的,具有划时代意义的,它没有量子力学基础,但因为简单易懂,也能解释大部分共价键的形成,至今依然出现在中学课本里。[13]
共用电子对理论有以下几点
·原子最外层达到8电子时是稳定结构,化合物中的所有原子的最外层价电子数必须为8(氢为2);
·原子间形成共价键时,可通过共用电子的方式使最外层达到8(2)电子稳定结构。
路易斯理论的电子配对思想为价键理论的发展奠定了基础。[14]值得注意的是,路易斯理论尚不完善,它无法说明电子配对的原因和实质;此外,不符合“”的化合物也有很多,例如:(6电子)、(10电子)、(12电子)。价键理论是基于路易斯理论电子配对思想发展起来的共价键理论。价键理论将应用量子力学解决氢分子问题的成果推广到其他中,成功解释了许多分子的结构问题。
沃尔特·海特勒(W.H.Heitler)和(F.London)在运用量子力学方法处理氢气分子的过程中,得到了分子能量E和核间距R之间的关系曲线,发现:若两个氢原子自旋方向相反,随着轨道的重叠(波函数相加)会出现一个概率密度较大的区域,氢原子将在系统能量最低核间距处成键;若两个氢原子自旋方向相同,则相减的波函数单调递减,系统能量无限趋近E=0,没有最低点,无法成健。因此,价键理论通过对氢分子的研究阐明了电子配对的内在原因和共价键的本质,价键理论就在HL的推广中诞生。[14]
轨道杂化理论
价键理论在解释分子中各原子分布情况时,莱纳斯·鲍林(L.Pauling)提出了轨道。
理论要点有
·中心原子能量相近的不同轨道在外界的影响下会发生杂化,形成新的轨道,称杂化原子轨道,简称杂化轨道;
·杂化轨道在角度分布上,比单纯的原子轨道更为集中,因而重叠程度也更大,更加利于成键;
·参加杂化的原子轨道数目与形成的杂化轨道数目相等,不同类型的杂化轨道,其空间取向不同。
注:此为杂化轨道的空间取向,不是化合物的结构
杂化轨道夹角
平面正三角形
,在化合物中,这些轨道可能被填充,例如,N原子进行sp^2杂化形成的NO2分子中,有一对孤对电子,那么NO2的空间结构是折线形(正三角形的一个顶点是孤对电子,电子是“看不见”的)。
价层电子对互斥理论(VSEPR theory)
价层电子对互斥理论是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和来预测分子的几何,其理论要点有
·共价分子中,中心原子周围电子对排布的几何形状,主要决定于中心原子的中的电子对数(包括成键电子对和孤对电子)。这些电子的位置倾向于分离的尽可能远一些,使彼此受到的排斥力最小[15];
·电子层中电子对相互排斥作用的大小,取决于电子对间的相互角度和电子对的成键情况。相距角度小,排斥力大。成键电子对因受两个原子吸引,较为紧缩,对其相邻电子对的斥力小于仅受一个吸引的孤对电子对其相邻电子对的斥力。即,电子对间斥力大小顺序为:孤对电子-孤对电子&孤对电子-成键电子对&成键电子对-成键电子对;[15]
·分子中的、三键当作单键处理;[15]
推测分子构形
设中心原子为A,其余n个配位原子均用B表示,m对孤对电子用E表示,则该物质可表示为ABnEm。令z=n+m,B和E都用Y表示,则该物质可表示为AYz,这里的Y就表示的价电子层中的电子对,z就表示中心原子的价电子层中的电子对数。我们可根据如下公式推测分子构型:
n由化学式即可看出
m=1/2(中心原子价电子数-配位原子提供的电子总数±离子电荷数)
平面三角形
注:更详细的表参见wikipedia,VSEPR theory(扩展阅读)
举例:推测CO3-2 的分子构型
故 CO3-2的分子构型为平面三角形分子轨道理论是比价键理论更精确的方法,其理论要点有
·分子中的电子不属于某个原子轨道,而属于整个分子;[15]
·分子轨道由原子轨道线性组合而成,分子轨道数目等于组成分子轨道的原子轨道数目,其中些轨道能量降低,成为“成键轨道”另一些能量升高,成为“”,还有一些能量不变,称“非键轨道”;[15]
·原子轨道在线性组合时,遵守“对称性匹配原则”、“能量相近原则”、“最大重叠原则”;[15]
·电子在分子轨道中排布时,遵守“”、“”、“”;[15]
分子轨道理论能解释一些价键理论无法解释的现象,比如的顺磁性。氧气分子
氧原子的外层电子数为6,这六个电子中的四个组成两对,其它两个单独存在。每个氧原子有六个外层电子
这两个单独的电子与另一个原子中相应的单独的电子结合组成两个新的共用的电子对,由此达到电子饱和的状态。
需要说明的是这里所描述的氧分子的模型是一个简化了的模型,实际上的氧分子要比这里描述的要复杂得多,因为这6个外层原子分布在不同的轨道上,因此它们不能形成这样简单的电子对。实际上的氧分子有三对共用的电子对和两个单独的电子。氧分子O2的模型共价键从不同的角度可以进行不同的,每一种分类都包括了所有的共价键(只是分类角度不同)。σ键(sigma bond)
由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”(见右图)。[11] σ键属于,它可以是一般共价键,也可以是配位共价键。一般的单键都是σ键。发生后形成的共价键也是σ键。由于σ键是沿轨道方向形成的,轨道间重叠程度大,所以,通常σ键的键能比较大,不易断裂,而且,由于有效重叠只有一次,所以两个原子间至多只能形成一条σ键。
(pi bond)
π键[16]成键原子的未杂化p轨道,通过平行、侧面重叠而形成的共价键,叫做π键,可简记为“肩并肩”(见右图)。[11] π键与σ键不同,它的必须是未成对的p轨道。π键性质各异,有两中心,两电子的定域键,也可以是共轭Π键和。两个原子间可以形成最多2条π键,例如,中,存在一条σ键,一条π键,而碳碳中,存在一条σ键,两条π键。
π键中的可以吸收紫外线并被激发,所以,含有π键的化合物有抵御紫外线的功能,防晒霜正是利用了这个原理防护紫外线对人的伤害。[11]苯分子中的大π键共轭π键具有特殊的稳定性,例如中存在6中心6电子的大π键,显现出芳香性,不易发生加成和,而易发生,与苯环有类似键型的化合物包括部分、和其他,化学家通过分子轨道计算得出了芳香性判定的(亦名),其它常见的非苯芳烃包括、[18]轮烯等;而石墨的每一层都有一个无穷大的π键,电子在这个超大π键中可以自由移动,类似于,这也是石墨可以横向导电的原因。[11]
(delta bond)
δ键由两个d轨道四重交盖而形成的共价键称为δ键,可简记为“面对面”(见下图)。
δ键只有两个节面(电子云密度为零的平面)。从键轴看去,δ键的轨道对称性与d轨道的没有区别,而希腊字母δ也正来源于d轨道。
δ键常出现在中,尤其是钌、和所形成的化合物。通常所说的“”指的就是一个σ键、两个π键和一个δ键。
以上三种化学键经过组合,可以形成各种不同的键型,例如,一个σ键和两个π键可以组成一个三键,但,有证据表明双原子间的共价键最多不能超过六条。[17]一般共价键
一般共价键有时也称“正常共价键”,是为了和“配位共价键”进行区分时使用的概念,指成键时两个原子各自提供一个未成对电子形成的共价键。[18] 配位共价键(coordinate covalent bond)
配位共价键简称“”是指两原子的成键电子全部由一个原子提供所形成的共价键[18],其中,提供所有成键电子的称“(简称配体)”、提供空轨道接纳电子的称“受体”。常见的配体有:(氮原子)、一氧化碳()、氰根离子(碳原子)、水()、(氧原子);受体是多种多样的:有氢离子、以三氟化硼(硼原子)为代表的、还有大量。对的研究已经发展为一门专门的学科,。主条目:、
从上面的内容可以看出,“”属于配体、而“氢离子”属于受体,这表明,氢离子与氢氧根发生的酸碱中和反应可以看成是氢离子与氢氧根形成配位键的过程。化学家路易斯从这一点出发,提出了“路易斯酸”与“路易斯碱”的概念,认为凡是在配位键成键过程中,能给出电子的,都称为“碱”;能接纳电子的,都称为“酸”。路易斯的把酸和碱的范围扩大了,路易斯酸碱对不仅包括所有的的阿伦尼乌斯酸碱对,还包括一些中性甚至是根本不溶于水的物质。[15]其实,路易斯酸的本质是配位键中的“”;路易斯碱的本质是配位键中的“配体”,二者是等同的。
配位共价键与一般共价键的异同
配位共价键与一般共价键的区别只体现在成键过程上,它们的是相同的,例如,铵根离子的氮中,有三条是一般共价键,一条是配位共价键,但这四条键完全等价,铵根离子也是完全对称的正四面体形。在书写时,一般共价键使用符号“—”;配位共价键使用符号“→”箭头从配体指向受体。
按成键电子偏向 (polar bond)
极性键,标&amp在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,电子云偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称。形成共价键时,由于电子云的偏离程度不同,极性键又有“强极性键”和“弱极性键”之分,但通常两个不同原子间的成键就是极性键。[11]共价可用键矩进行判断。共价分子的极性等于分子中所有共价键的矢量和,所以,由极性共价键组成的分子可以是()也可以是(二氧化碳)。
(non-polar bond)
由的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。[11]非极性共价键存在于中,也存在于某些化合物中,完全由构成的分子一定是非极性分子(但有的非极性分子中含有极性键)。共价键是电子云的重叠,所以共价键最本质的分类方式就是它们的重叠方式。现在已知有3种重叠方式,分别称作:
在中,通常把共价键以其共用的电子对数分为单键、双键以及三键。单键是一根σ键;双键和都含一根σ键,其余1根或2根是π键。
但不用此法。原因是,无机化合物中经常出现的体系()使得某两个原子之间共用的电子对数很难确定,因此无机物中常取平均键级,作为的粗略标准。假如组成共价键的原子的不同,那么它们共用的电子对可能被其中的一个原子核吸引,由此而来它们在分子中的分布也不相等,电子被吸引比较集中的地方显负性,电子比较少集中的地方显正性。这样整个分子就会显示出一定的。一个分子的电极的分布除其原子的电负性外还与其分子的组成有关。主条目:
配位键是一种特殊的共价键,它的特点在于共用的一对电子出自同一原子。形成配位键的条件是,一个原子有,而另一个原子有空轨道。,尤其是过渡金属配合物,种类繁多,用途广泛,现已形成配位化学。
:在配合物中,提供空轨道的一方称为中心离子
:在配合物中,提供孤对电子的一方称为配体
分类化学键共价键
σ键:三中心两电子键(香蕉键)·三中心四电子键(氢键、双氢键、抓氢键)·四中心两电子键π键:反馈π键···方向性δ键:··六重键氢键双氢键··低能垒氢键·对称氢键·非共价键·机械结合作用·嵌入··亲金作用·重叠··其他分子内作用力·分子间作用力···离子键·金属键·成键·反键···(bond length)
键长指两个成键原子的平衡核间距离,是了解分子结构的基本构型参数,也是了解强弱和性质的参数。 对于由相同的A和B两个原子组成的化学键,键长值小,键强; 键的数目多,键长值小。 在实际的分子中,由于受、空间阻碍效应和相邻的影响,同一种化学键键长还有一定差异。 键长的测定主要是通过和手段。[14]下表给出常见共价键的键长(pm)数据取自《化学-物质结构与性质(选修)》(2007年)。[11]
    (bond energy)
通常指在下分子拆开成气态时,每种键所需能量的平均值。对来说,键能就是键的。键能与键焓近似相等,气态分子的等于全部键能之和。
下表给出常见共价键的键能(kJ/mol)数据取自《化学-物质结构与性质(选修)》(2007年)。[11]
    (bond angle)
键角即两共价键的夹角,由于共价键的方向性,共价化合物的键角是一定的,但组成相似的化合物未必有相同的键角,孤对电子对成键电子有较大的作用,可导致键角变小。
(bond order)
键级是分子轨道提出的一个概念,其定义是成键电子与反键电子之差的一半,键级可以描述共价键的稳定性,键级越大,共价键越稳定。
键偶极矩(bond dipole moment)
键简称“键矩”,概念与力矩类似,可以描述共价键的极性。的定义为:
式中μ为键矩(C·m),l为键长,q为
键矩是矢量,由弱的一端指向电负性强的一端,即从正到负。键矩也可以由实验测得[14]相比于键参数对共价键的描述,各种模型的描述显得更加直观。
下表给出在分子模型中常用的颜色和对应元素。
灰色(青色)
注:上表只是给出了常用的元素和对应颜色,与实际情况存在着一定的出入。
(Ball-and-stick models)
甲烷的球棍模型(左)与比例填充模型球棍模型又称“空间填充模型”,是一种用来表现化学分子的分布的分子模型。在球棍模型中,“棍”代表共价键,“球”代表成键原子。球棍模型能表示分子的键角以及成键原子的半径。
比例填充模型(Space-filling models)
比例填充模型与球棍模型类似,用来表现分子三维空间分布的分子模型。是球棒模型的进一步发展,可显示更为真实的分子外型。但很难从模型中看见化合物的键角。
1.非金属单质
2.共价化合物
3.某些离子化合物
新手上路我有疑问投诉建议参考资料 查看

我要回帖

更多关于 配位共价键 的文章

 

随机推荐