在如图 ad为三角形abcC中,AD是BC的中点,点...

已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点, (1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.
(1)证明:连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°又BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)△DEF为等腰直角三角形.证明:若E,F分别是AB,CA延长线上的点,如图所示:连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC(三线合一),∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF仍为等腰直角三角形.
为您推荐:
其他类似问题
(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)还是证明:△BED≌△AFD,主要证∠DAF=∠DBE(∠DBE=180°-45°=135°,∠DAF=90°+45°=135°),再结合两组对边对应相等,所以两个三角形全等.
本题考点:
等腰直角三角形;全等三角形的判定与性质.
考点点评:
本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.
扫描下载二维码当前位置:
>>>如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别..
如图,在△ABC中,∠BAC=90 °,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
题型:解答题难度:偏难来源:广西自治区中考真题
解:(1)证明: ∵∠BAC =90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC&&∵AE=CF&& ∴△AED≌△CFD (2)依题意有:FC=AE=&& ∵△AED≌△CFD∴=S△ADC=9&&∴(3) 依题意有:AF=BE=-6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135°&&∴△ADF≌△BDE&&&&∴∴∴
马上分享给同学
据魔方格专家权威分析,试题“如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别..”主要考查你对&&三角形全等的判定,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
三角形全等的判定求二次函数的解析式及二次函数的应用
三角形全等判定定理:1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。三角形全等的判定公理及推论:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS” 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:①S.S.S. (边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。②S.A.S. (边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。③A.S.A. (角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。④A.A.S. (角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。⑤R.H.S. / H.L. (直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:⑥A.A.A. (角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。⑦A.S.S. (角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。解题技巧:一般来说考试中线段和角相等需要证明全等。因此我们可以来采取逆思维的方式。来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别..”考查相似的试题有:
299645108644146521227475298929305776初中数学 COOCO.因你而专业 !
你好!请或
使用次数:98
入库时间:
△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
相似三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质。
几何综合题。
(1)根据等腰三角形的性质以及相似三角形的判定得出相似三角形即可;
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,进而得出△BDF∽△CED∽△DEF.
(3)首先利用△DEF的面积等于△ABC的面积的,求出DH的长,进而利用S△DEF的值求出EF即可.
(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
证明:∵AB=AC,D为BC的中点,
∴AD⊥BC,∠B=∠C,∠BAD=∠CAD,
又∵∠MDN=∠B,
∴△ADE∽ABD,
同理可得:△ADE∽△ACD,
∵∠MDN=∠C=∠B,
∠B+∠BAD=90°,∠ADE+∠EDC=90°,
∠B=∠MDN,
∴∠BAD=∠EDC,
∵∠B=∠C,
∴△ABD∽△DCE,
∴△ADE∽△DCE,
(2)△BDF∽△CED∽△DEF,
证明:∵∠B+∠BDF+∠BFD=180°
∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE,
由AB=AC,得∠B=∠C,
∴△BDF∽△CED,
又∵∠C=∠EDF,
∴△BDF∽△CED∽△DEF.&&
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=6.
在Rt△ABD中,AD2=AB2﹣BD2,
∴S△ABC=BC•AD=×12×8=48.
S△DEF=S△ABC=×48=12.
又∵AD•BD=AB.DH,
∵△BDF∽△DEF,
∴∠DFB=∠EFD&&
∵DG⊥EF,DH⊥BF,
∴DH=DG=.
∵S△DEF=×EF×DG=12,
此题主要考查了相似三角形判定与性质以及三角形面积计算,熟练应用相似三角形的性质与判定得出对应用边与对应角的关系是解题关键.
如果没有找到你要的试题答案和解析,请尝试下下面的试题搜索功能。百万题库任你搜索。搜索成功率80%当前位置:
>>>如图,在△ABC中,点D为BC上一点,点P在AD上,过点P作PM∥AC交AB于..
如图,在△ABC中,点D为BC上一点,点P在AD上,过点P作PM∥AC交AB于点M,作PN∥AB交AC于点N. (1)若点D是BC的中点,且AP:PD=2:1,求AM:AB的值;(2)若点D是BC的中点,试证明;(3)若点D是BC上任意一点,试证明.
题型:解答题难度:中档来源:北京期中题
解:(1)过点D作DE∥PM交AB于E,∵点D为BC中点,∴点E是AB中点,且,∴;(2)延长AD至点Q,使DQ=AD,连BQ、CQ,则四边形ABQC是平行四边形.∴PM∥BQ,PN∥CQ,∴,∴;(3)过点D作DE∥PM交AB于E,∴,又∵PM∥AC,∴DE∥AC∴,∴同理可得:∴.
马上分享给同学
据魔方格专家权威分析,试题“如图,在△ABC中,点D为BC上一点,点P在AD上,过点P作PM∥AC交AB于..”主要考查你对&&平行线分线段成比例&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平行线分线段成比例
平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例。推广:过一点的一线束被平行线截得的对应线段成比例。定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。证明思路:该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。AM=DP,AN=DQAB=AM/cosA,AC=AN/cosA,∴AB/AC=AM/ANDE=DP/cosD,DF=DQ/cosD,∴DE/DF=DP/DQ又∵AM=DP,AN=DQ,∴AB/AC=DE/DF根据比例的性质:AB/(AC-AB)=DE/(DF-DE)∴AB/BC=DE/EF法2:过A点作AN∥DF交BE于M点,交CF于N点,则AM=DE,MN=EF.∵ BE∥CF∴△ABM∽△ACN.∴AB/AC=AM/AN∴AB/(AC-AB)=AM/(AN-AM)∴AB/BC=DE/EF法3:连结AE、BD、BF、CE根据平行线的性质可得S△ABE=S△DBE, S△BCE=S△BEF∴S△ABE/S△CBE=S△DBE/S△BFE根据不同底等高三角形面积比等于底的比可得:AB/BC=DE/EF由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF
发现相似题
与“如图,在△ABC中,点D为BC上一点,点P在AD上,过点P作PM∥AC交AB于..”考查相似的试题有:
19836921354494973183655213543113398在三角形ABC中,D是AB的中点,AC=12,BC=5,CD=6.5.求证:三角形ABC是直角三角形
∵∠ADC=∠DCB+∠DBC∴∠DAC+∠DCA+∠DCB+∠DBC=180度∴∠DAC+∠DCB=90度∵∠DCB+∠DCA=90度∴∠DAC=∠DCA∴AD=DC=6.5∵D是AB的中点∴AD=BD=6.5∴DC=AD=DC=6.5∴AB=13∵AC的平方+CB的平方=AB的平方∴三角形ABC是直角三角形
为您推荐:
其他类似问题
延长CD到E使DE=CD,连接EB,易证三角形EDB全等于三角形CDA,所以EB=12,所以三角形EBC为直角三角形,角EBA+角ABC=90度,角EBA=角A,所以角A+角ABC=90度,所以得证…
扫描下载二维码

我要回帖

更多关于 如图 ad为三角形abc 的文章

 

随机推荐