在rt三角形abc△ABC中,∠C=90°(1)若...

1.如图,在Rt△ABC中.∠C=90度,∠BAC=2∠B
1.如图,在Rt△ABC中.∠C=90度,∠BAC=2∠B
AD是∠BAC的平分线,请说明CD与BC的数量关系!(要解题过程)
根据三角形内角和等于180度
又.∠C=90度,∠BAC=2∠B
所以∠BAC=60
∠B=30
BC=√3AC
AD是∠BAC的平分线
∠CAD=30
AC=√3CD
所以3CD=BC
提问者 的感言:3Q!
等待您来回答
学习帮助领域专家
当前分类官方群专业解答学科习题,随时随地的答疑辅导在Rt△ABC中,∠c=90°,若a比b=1比3,则b比c=?_百度知道
在Rt△ABC中,∠c=90°,若a比b=1比3,则b比c=?
快~滚来滚去。。。
提问者采纳
a+b=90a:b=1:3所以b=90×3÷(1+3)=67.5°所以b:c=67.5:90=3:4
为毛有人回答3∶√10?
ab都是角吧我对的采纳吧
提问者评价
嗯嗯,谢啦!
其他类似问题
按默认排序
其他3条回答
则b=3k根据勾股定理得c²=a²+b²=k²+9k²=10k²c=√10kb∶c=3k∶√10k=3∶√10
设a=x,则b=3x∴c²=x²+(3x)²=10x²∴c=√10x ∴b:c=3:√10=3√10/10
设a为1b为3,勾股定理得c等于根号10,所以b比C等于3比根号10
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>已知:如图1,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿..
已知:如图1,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0&t&4)。解答下列问题:
(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
题型:解答题难度:偏难来源:专项题
解:(1)在Rt△ABC中,,由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC, ∴,∴,∴;
(2)过点P作PH⊥AC于H,∵△APH∽△ABC,∴,∴,∴,∴。
(3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ,∴(5-t)+2t=t+3+(4-2t), 解得:t=1,若PQ把△ABC面积平分,则, 即,∵t=1代入上面方程不成立,∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.
(4)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP′C是菱形,那么PQ=PC,∵PM⊥AC于M,∴QM=CM,∵PN⊥BC于N,易知△PBN∽△ABC,∴,∴,∴,∴,∴,解得:,∴当时,四边形PQP′C 是菱形,此时,,,在Rt△PMC中,,∴菱形PQP′C的边长为。
马上分享给同学
据魔方格专家权威分析,试题“已知:如图1,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿..”主要考查你对&&求二次函数的解析式及二次函数的应用,平行线的判定,三角形的周长和面积,菱形,菱形的性质,菱形的判定,相似三角形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用平行线的判定三角形的周长和面积菱形,菱形的性质,菱形的判定相似三角形的性质
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。平行线的概念:在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。注意:①平行线是无限延伸的,无论怎样延伸也不相交。②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。平行线的判定平行线的判定公理:(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。还有下面的判定方法:(1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。
判定方法的逆应用:在同一平面内,两直线不相交,即平行。两条直线平行于一条直线,则三条不重合的直线互相平行。两直线平行,同位角相等。两直线平行,内错角相等。两直线平行,同旁内角互补。6a⊥c,b⊥c则a∥b。三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。构成三角形的元素:边:组成三角形的线段叫做三角形的边;顶点:相邻两边的公共端点叫做三角形的顶点;内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。三角形有下面三个特性:(1)三角形有三条线段;(2)三条线段不在同一直线上;(3)首尾顺次相接。三角形的表示:用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。三角形的分类:(1)三角形按边的关系分类如下:;(2)三角形按角的关系分类如下:把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。三角形的周长和面积:三角形的周长等于三角形三边之和。三角形面积=(底×高)÷2。菱形的定义:在一个平面内,有一组邻边相等的平行四边形是菱形。菱形的性质:①菱形具有平行四边形的一切性质;②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;③菱形的四条边都相等;④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。菱形的判定:在同一平面内,(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。 相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
发现相似题
与“已知:如图1,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿..”考查相似的试题有:
84836155830144954195399211592158354如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒
练习题及答案
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。设点P、Q运动的时间是t秒(t>0),
(1)当t=2时,AP=________,点Q到AC的距离是________;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值。若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值。
题型:解答题难度:偏难来源:江苏期中题
所属题型:解答题
试题难度系数:偏难
答案(找答案上)
解:(1)1;;(2)作QF⊥AC于点F,AQ=CP= t,∴AP=3-t,由△AQF∽△ABC,,得,∴,∴,即。
(3)能。①当DE∥QB时,如图1,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°,由△APQ∽△ABC,得,即,解得。②如图2,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ =90°, 由△AQP∽△ABC,得,即,解得。
马上分享给同学
初中二年级数学试题“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒”旨在考查同学们对
直角三角形的性质及判定、
求二次函数的解析式及二次函数的应用、
勾股定理、
梯形,梯形的中位线、
相似三角形的性质、
……等知识点的掌握情况,关于数学的核心考点解析如下:
此练习题为精华试题,现在没时间做?,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问。
考点名称:
直角三角形定义:
直角三角形满足毕氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各边和角之间的关系也是三角学的基础。
直角三角形的外心是斜边中点;其垂心是直角顶点。
若直角三角形的三边均为整数,称为毕氏三角形,其边长称为勾股数。
直角三角形的面积:
和其他三角形相同,直角三角形的面积等于任一边(底边)乘以对应高的一半。在直角三角形中.若以一股(直角边)为底边,另一股即为对应的高,因此面积为二股直角边乘积的一半,面积T的公式为
其中a和b是直角三角形的二股。
若内切圆和斜边AB相切于P点,令半周长(a + b + c) / 2为s,则PA = s & a且PB = s & b,面积可表示为
此公式只适用在直角三角形
直角三角形的三边关系:
性质1:直角三角形两直角边的平方和等于斜边的平方。
性质2:在直角三角形中,两个锐角互余。
性质3:在直角三角形中,斜边上的中线等于斜边的一半。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)×2=BD·DC,
(2)(AB)×2=BD·BC , & 射影定理图
(3)(AC)×2=CD·BC 。 & 等积式
(4)ABXAC=ADXBC (可用面积来证明)
(5)直角三角形的外接圆的半径R=1/2BC,
(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)
直角三角形的判定方法:
判定1:定义,有一个角为90&的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30&内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90&)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30&角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:
二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a&0);
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a&0)
(3)交点式:y=a(x-x1)(x-x2)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
求二次函数解析式的方法
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数应用解题技巧
(1)应用二次函数解决实际问题的一般思路:
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
考点名称:
勾股定理又称商高定理、毕达哥拉斯定理,简称&毕氏定理&,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)
⑴勾股定理是联系数学中最基本也是最原始的两个对象&&数与形的第一定理。
⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓&无理数&与有理数的差别,这就是所谓第一次数学危机。
⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理的应用:
从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:&今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:&一十二尺&。
勾股定理的形式:
如果c是斜边的长度而a和b是另外两条边的长度,勾股定理可以写成:
如果a和b知道,c可以这样写:
&如果斜边的长度c和其中一条边(a或b)知道, 那另一边的长度可以这样计算:
考点名称:
梯形的定义:
梯形是有且仅有一组对边平行的凸四边形。梯形平行的两条边为&底边&,分别称为&上底&和&下底&,其间的距离为&高&,不平行的两条边为&腰&。下底与腰的夹角为&底角&,上底与腰的夹角为&顶角&。
注意:广义中,平行四边形是梯形,因为它有一对边平行。狭义中,平行四边形并不是梯形,因为它有二对边平行。
梯形的中位线:
由梯形两腰的中点连成的线段称为梯形的中位线。梯形的中位线与上底和下底都平行,长度为上底与下底的长度之和的一半。
特殊的梯形:
等腰梯形:
两腰长度相等的梯形称为等腰梯形。它具有如下性质:
两条对角线相等。
同一底上的二内角相等。
对角互补,四顶点共圆。
依据以上性质,判定一个四边形是等腰梯形可以通过以下命题:
两腰相等的梯形是等腰梯形。
两条对角线相等的梯形是等腰梯形。
同一底上的二内角相等的梯形是等腰梯形。
直角梯形:
一个底角为90&的梯形是直角梯形。由于梯形的二底边平行,因此根据同旁内角关系,直角梯形一腰上的两个底角都是90&。
注意,矩形并非直角梯形,因为它虽然有一个角为90&,但不满足梯形的判定。
梯形的高公式:
a、b为梯形的底边,a不等于b。c、d为梯形的两腰。
则梯形的高:
梯形的面积公式:
其中m为中位线的长度。
以上两个公式均适用于任何梯形。
考点名称:
相似三角形定义:
对应角相等,对应边成比例的两个三角形叫做相似三角形(similar triangles)。互为相似形的三角形叫做相似三角形。
相似三角形的判定方法:
一、平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。
四、相似三角形如果两个三角形的三组对应边成比例,那么这两个三角形相似
五、对应角相等且对应边成比例的两个三角形叫做相似三角形
六、两三角形三边对应垂直,则两三角形相似。
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比
定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相关练习题推荐
与“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒”相关的知识点试题(更多试题练习--)
微信沪江中考
CopyRight & 沪江网2014

我要回帖

更多关于 在rt三角形abc 的文章

 

随机推荐