在一匀强电场{水平向右}有一半圆轨道半径R,一质量为M代电量正Q的带电粒子在电场中无初速度划下,在最低点受对轨道压...

当前位置:
>>>在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁..
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。 (1)如果粒子恰好从A点射出磁场,求入射粒子的速度。 (2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
题型:计算题难度:偏难来源:宁夏自治区高考真题
解:(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:解得: (2)设O'是粒子在磁场中圆弧轨道的圆心,连接O'Q,设O'Q=R'由几何关系得:,由余弦定理得:解得:设入射粒子的速度为v,由解出:
马上分享给同学
据魔方格专家权威分析,试题“在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁..”主要考查你对&&带电粒子在匀强磁场中的运动&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
带电粒子在匀强磁场中的运动
带电粒子在匀强磁场中的运动形式:
电偏转与磁偏转的对比:
关于角度的两个结论:
(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即。(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即有界磁场中的对称及临界问题:(1)直线边界粒子进出磁场时的速度关于磁场边界对称.如图所示。(2)圆形边界①沿半径方向射入磁场,必沿半径方向射出磁场。②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。(3)平行边界存在着临界条件:(4)相交直边界带电粒子在匀强磁场中的匀速圆周运动:确定轨迹圆心位置的方法:
带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:
带电粒子在有界磁场中的临界与极值问题的解法:当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。 (2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧) (3)当速率v变化时,圆周角大的,运动时间越越长。
“动态圆”问题的解法:
&1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。 2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。3.入射速率不同相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。4.入射位置不同相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。5.有界磁场的边界位置变化相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。
发现相似题
与“在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁..”考查相似的试题有:
350181300230157753437035368358112812在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.在一质量为m.带有电量为q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)⑴如果粒子恰好从A点射出磁场,求入射粒子的速度.⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为60.(如图)若R=1m,d=1.2m,求入射粒子在磁场中运动的轨道半径R'.
zxdoeuqu098
首先判断磁场垂直纸面向里 第一问 粒子只受洛伦兹力做圆周运动 根据左手定则判断 圆心在PA上 结合题与几何关系知 r=d/2 再由mv²/r=qvB 得r=mv/qB 故v=dqB/2m 第二问 也非常简单 你根据那个速度就可以准确画出圆心C吧 设半径为R 在三角形OQC中 角CQO=60度 OQ=1 CQ=R-(AD-AO)=R-0.2 CQ=R 用余弦定理就可以了 我算得R=1.6 你自己验算下吧
为您推荐:
其他类似问题
扫描下载二维码知识点梳理
是高中物理的一个重要定理,也是高考中的一个热点。因此对于每一个高中生来说,在物理的学习中,都必须能灵活地运用动能定理。下面谈谈关于动能定理的应用。动能定理的内容是:外力对物体所做功的代数和等于物体动能的增量。其数学表达式为:应用动能定理时必须注意以下几点:(1)应用动能定理解题时,在分析过程的基础上,无须深究物体运动状态过程中变化的细节,只须考虑整个过程中各个力做的总功及物体的初动能和末动能。(2)动能定理的研究对象是单个物体,作用在物体上的外力包括所有的力,因此必须对物体进行受力分析。(3)动能定理中的位移和速度必须是相对于同一个参照系,一般以地面为参照系。(4)求总功可分为下述两种情况:①若各恒力同时作用一段位移,可先求出物体所受的合外力,再求总功;也可用总功等于各力所做功的代数和的方法求。②若各力不同时对物体做功,总功应为各阶段各力做功的代数和。动能定理是功能基本关系之一,凡是涉及力所引起的位移而不涉及的问题,应用动能定理分析讨论,常比简捷。应用动能定理的解题步骤:A. 选取研究对象,明确并分析运动过程。B. 分析受力及各力做功的情况,有哪些力?有哪些力做功?在哪段位移过程中做功?正功还是负功?做了多少功。最后求出各个力做功的代数和。C. 明确过程始末状态的动能。D. 列方程,必要时注意分析题目的隐含条件,补充方程进行求解。
描述某点电场特性的物理量,符号是E,E是矢量。简称场强,定义为放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,场强的方向与正检验电荷的受力方向相同。场强的定义是根据电场对电荷有的特点得出的。对电荷激发的静电场和变化磁场激发的涡旋电场都适用。电场强度的单位是牛/库或伏/米,两个单位名称不同大小一样。场强数值上等于单位电荷在该点受的电场力,电场强度的方向与正电荷受力方向相同。电场的特性是对电荷有作用力,电场力,正电荷受力方向与方向相同,负电荷受力方向与方向相反。电场是一种物质,具有能量,场强大处电场的能量大。已知电场强度可判定电场对电荷的作用力,电介质(绝缘体)的电击穿与场强大小有关。点电荷的电场强度由点电荷决定,与试探电荷无关。  真空中点电荷场强公式:E=k\frac{Q}{{{r}^{2}}}匀强电场场强公式:E=\frac{U}{d}任何电场中都适用的定义式:E=\frac{F}{q}介质中点电荷的场强:\frac{kQ}{\varepsilon {{r}^{2}}}注:匀强电场。在匀强电场中,场强大小相等,方向相同,匀强电场的电场线是一组疏密相同的平行线.\frac{kQ}{\varepsilon {{r}^{2}}}在匀强电场中,有E=U/d(只适用于匀强电场),U为电势差,单位:伏特/米。电荷在此电场中受到的力为恒力,带电粒子在匀强电场中作匀。而此电场的等势面与电场线相垂直。
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“如图所示,光滑水平轨道与半径为R的光滑竖直半圆轨道在B点平滑...”,相似的试题还有:
如图所示,光滑水平轨道与半径为R的光滑竖直半圆轨道在B点平滑连接.在过圆心O的水平界面MN的下方分布有水平向右的匀强电场.现有一质量为m,电量为+q的小球从水平轨道上A、点由静止释放,小球运动到C点离开圆轨道后,经界面MN上的P点进入电场(P点恰好在A点的正上方,如图.小球可视为质点,小球运动到C点之前电量保持不变,经过C点后电量立即变为零).已知A、B间距离为2R,重力加速度为g.在上述运动过程中,求:(1)电场强度E的大小;(2)小球在圆轨道上运动时的最大速率:
如图所示,PABCD是固定在竖直平面内的光滑绝缘轨道,其中PA是竖直轨道,ABCD是半径为R的圆弧轨道,两轨道在A点平滑连接.B、D分别为圆轨道的最低点和最高点,B、D连线是竖直直径,A、C连线是水平直径,P、D在同一水平线上.质量为m、电荷量为+q的小球从轨道上P点静止释放,运动过程中电荷量保持不变,重力加速度为g.(1)小球运动到B点时,轨道对小球的作用力有多大?(2)当小球运动到C点时,突然在整个空间中加上一个方向竖直向上的匀强电场,电场强E=\frac{mg}{2q},结果小球运动到点D后水平射出,经过一段时间碰到了轨道的Q点,求:Q点与P点间的距离s.
如图所示,光滑水平轨道与半径为R的光滑竖直半圆轨道在B点平滑连接.在过圆心O的水平界面MN的下方分布有水平向右的匀强电场.现有一质量为m,电量为+q的小球从水平轨道上A点由静止释放,小球运动到C点离开圆轨道后,经界面MN上的P点进入电场(P点恰好在A点的正上方,如图.小球可视为质点,小球运动到C点之前电量保持不变,经过C点后电量立即变为零).已知A、B间距离为2R,重力加速度为g.在上述运动过程中,求:(1)电场强度E的大小;(2)小球在圆轨道上运动时最大速率;(3)小球对圆轨道的最大压力的大小.在半径为R的半圆形区域中有一匀强磁磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).求入射粒子的速度.((重点在那个半径怎么求!只要那个步骤其他的可以省))也就是做一条直线垂直于出磁场速度方向交AD与&M点求角QMP=角φ
精分0pHhj竽
为您推荐:
其他类似问题
扫描下载二维码(2007o宁夏)在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).(1)如果粒子恰好从A点射出磁场,求入射粒子的速度.(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).求入射粒子的速度.
亮亮66es潰
(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径.设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:1解得:1=qBd2m(2)设O′是粒子在磁场中圆弧轨道的圆心,连接O′Q,设O′Q=R′.由几何关系得:∠OQO′=φ&&&&&&&&&&& OO′=R′+R-d由余弦定理得:/)2=R2+R/2-2RR/cosφ解得:/=d(2R-d)2[R(1+cosφ)-d]设入射粒子的速度为v,由2R/=qvB解出:答:(1)如果粒子恰好从A点射出磁场,入射粒子的速度为.(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).入射粒子的速度为.
为您推荐:
(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径,根据洛伦兹力提供向心力公式即可求解速度;(2)设O′是粒子在磁场中圆弧轨道的圆心,连接O′Q,设O′Q=R′,根据几何关系即余弦定理即可求得R′,再根据洛伦兹力提供向心力公式即可求解速度;
本题考点:
带电粒子在匀强磁场中的运动.
考点点评:
熟悉电子在磁场中做匀速圆周运动由洛伦兹力提供向心力,据此列式求出半径的表达式,能正确作出粒子做圆周运动的半径.
扫描下载二维码

我要回帖

更多关于 带电粒子在电场中 的文章

 

随机推荐