已知两点坐标求距离过点A(-4,0)的动直线l与抛物线C:x^2=4y相交于B,C两点。

(2014o十堰)已知抛物线C1:y=a(x+1)2-2的顶点为A,且经过点B(-2,-1).
(1)求A点的坐标和抛物线C1的解析式;
(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;
(3)如图2,若过P(-4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.
(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.
(2)根据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.
(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形状、位置随着点G的变化而变化,故需对点G的位置进行讨论,借助于相似三角形的判定与性质、三角函数的增减性等知识求出符合条件的点G的坐标,从而求出相应的直线m的解析式.
解:(1)∵抛物线C1:y=a(x+1)2-2的顶点为A,
∴点A的坐标为(-1,-2).
∵抛物线C1:y=a(x+1)2-2经过点B(-2,-1),
∴a(-2+1)2-2=-1.
解得:a=1.
∴抛物线C1的解析式为:y=(x+1)2-2.
(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,
∴抛物线C2的解析式为:y=(x+1)2-2-2=(x+1)2-4.
设直线AB的解析式为y=kx+b.
∵A(-1,-2),B(-2,-1),
∴直线AB的解析式为y=-x-3.
解得:或.
∴C(-3,0),D(0,-3).
∴OC=3,OD=3.
过点A作AE⊥x轴,垂足为E,
过点A作AF⊥y轴,垂足为F,
∵A(-1,-2),
∴AF=1,AE=2.
∴S△OAC:S△OAD
=(OCoAE):(ODoAF)
=(×3×2):(×3×1)
∴S△OAC:S△OAD的值为2.
(3)设直线m与y轴交于点G,与直线l交于点H,
设点G的坐标为(0,t)
当m∥l时,CG∥PQ.
∴△OCG∽△OPQ.
∵P(-4,0),Q(0,2),
∴OP=4,OQ=2,
∴t=时,直线l,m与x轴不能构成三角形.
∵t=0时,直线m与x轴重合,
∴直线l,m与x轴不能构成三角形.
∴t≠0且t≠.
①t<0时,如图2①所示.
∵∠PHC>∠PQG,∠PHC>∠QGH,
∴∠PHC≠∠PQG,∠PHC≠∠QGH.
当∠PHC=∠GHQ时,
∵∠PHC+∠GHQ=180°,
∴∠PHC=∠GHQ=90°.
∵∠POQ=90°,
∴∠HPC=90°-∠PQO=∠HGQ.
∴△PHC∽△GHQ.
∵∠QPO=∠OGC,
∴tan∠QPO=tan∠OGC.
∴点G的坐标为(0,-6)
设直线m的解析式为y=mx+n,
∵点C(-3,0),点G(0,-6)在直线m上,
∴直线m的解析式为y=-2x-6,
∴E(-1,-4).
此时点E在顶点,符合条件.
∴直线m的解析式为y=-2x-6.
②O<t<时,如图2②所示,
∵tan∠GCO==<,
tan∠PQO===2,
∴tan∠GCO≠tan∠PQO.
∴∠GCO≠∠PQO.
∵∠GCO=∠PCH,
∴∠PCH≠∠PQO.
又∵∠HPC>∠PQO,
∴△PHC与△GHQ不相似.
∴符合条件的直线m不存在.
③<t≤2时,如图2③所示.
∵tan∠CGO==≥,
tan∠QPO===.
∴tan∠CGO≠tan∠QPO.
∴∠CGO≠∠QPO.
∵∠CGO=∠QGH,
∴∠QGH≠∠QPO,
又∵∠HQG>∠QPO,
∴△PHC与△GHQ不相似.
∴符合条件的直线m不存在.
④t>2时,如图2④所示.
此时点E在对称轴的右侧.
∵∠PCH>∠CGO,
∴∠PCH≠∠CGO.
当∠QPC=∠CGO时,
∵∠PHC=∠QHG,∠HPC=∠HGQ,
∴△PCH∽△GQH.
∴符合条件的直线m存在.
∵∠QPO=∠CGO,∠POQ=∠GOC=90°,
∴△POQ∽△GOC.
∴点G的坐标为(0,6).
设直线m的解析式为y=px+q
∵点C(-3,0)、点G(0,6)在直线m上,
∴直线m的解析式为y=2x+6.
综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似,
此时直线m的解析式为y=-2x-6和y=2x+6.知识点梳理
【一般式】我们把关于x,y的Ax+By+C=0(其中&A,B&不同时为&0)叫做的一般式方程,简称一般式(general&form).
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“已知直线l:y=kx+m交抛物线C:x2=4y于相异两点A,...”,相似的试题还有:
已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=\frac{\sqrt{3}}{2}.(1)求椭圆E的方程;(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.
如图所示,已知抛物线C_{1}:x^{2}=y,圆M:x2+(y-4)2=1,点P是抛物线C1上一点(异于原点),过点P作圆M的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
已知抛物线y2=x上相异两点A(x1,y1),B(x2,y2),x1+x2=2.(1)若AB的中垂线经过点P(0,2),求直线AB的方程;(2)若AB的中垂线交x轴于点M,求△ABM的面积的最大值.分析:(1)方法一:设圆心C(3,4)到动直线l的距离为d,利用点到直线的距离公式可得圆心到直线的距离d,只要证明d<r即可;方法二 直线l变形为m(x-y+1)+(3x-2y)=0.利用直线系过定点,若定点在圆的内部即可;(2)利用垂径定理和弦长公式即可得出.解答:(1)证明:方法一:设圆心C(3,4)到动直线l的距离为d,则d=|(m+3)•3-(m+2)•4+m|(m+3)2+(m+2)2=12(m+52)2+12≤2.∴当m=-52时,dmax=2<3=r.故动直线l总与圆C相交.方法二 直线l变形为m(x-y+1)+(3x-2y)=0.令x-y+1=03x-2y=0解得x=2y=3如图所示,故动直线l恒过定点A(2,3).而AC=(2-3)2+(3-4)2=2<3(半径).∴点A在圆内,故无论m取何值,直线l与圆C总相交.(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小.∴最小值为232-(2)2=27.点评:本题综合考查了直线与圆相交问题转化为点到直线的距离公式可得圆心到直线的距离d<r或利用直线系过定点且定点在圆的内部垂径定理、弦长公式等基础知识与基本技能方法,属于中档题.
请在这里输入关键词:
科目:高中数学
已知抛物线C的顶点为坐标原点,椭圆C′的对称轴是坐标轴,抛物线C在x轴上的焦点恰好是椭圆C′的焦点(Ⅰ)若抛物线C和椭圆C′都经过点M(1,2),求抛物线C和椭圆C′的方程;(Ⅱ)已知动直线l过点p(3,0),交抛物线C于A,B两点,直线l′:x=2被以AP为直径的圆截得的弦长为定值,求抛物线C的方程;(Ⅲ)在(Ⅱ)的条件下,分别过A,B的抛物线C的两条切线的交点E的轨迹为D,直线AB与轨迹D交于点F,求|EF|的最小值.
科目:高中数学
已知抛物线D的顶点是椭圆x24+y23=1的中心,焦点与该椭圆的右焦点重合.(Ⅰ)求抛物线D的方程;(Ⅱ)已知动直线l过点P(4,0),交抛物线D于A、B两点.(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.
科目:高中数学
已知抛物线、椭圆和双曲线都经过点M(2,1),它们在y轴上有一个公共焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)已知动直线l过点P(0,3),交抛物线于A、B两点,是否存在垂直于y轴的直线m被以AP为直径的圆截得的弦长为定值?若存在,求出m的方程;若不存在,说明理由.
科目:高中数学
(;茂名一模)已知椭圆C1:x2a2+y2b2=1&&&(a>b>0)过点A(0,2)且它的离心率为33.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)已知动直线l过点Q(4,0),交轨迹C2于R、S两点.是否存在垂直于x轴的直线m被以RQ为直径的圆O1所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!> 【答案带解析】设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r...
设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范围是(
)(A)(1,3)
(B)(1,4)(C)(2,3)
(D)(2,4) 
【解析】不妨设直线l:x=ty+m,
代入抛物线方程有:y2-4ty-4m=0
则△=16t2+16m>0
又中点M(2t2+m,2t),则kMCkl=-1
即m=3-2t2
当t=0时,若r≥5,满足条件的直线只有1条,不合题意,
若0<r<5,则斜率不存在的直线有2条,此时只需对应非零的t的直线恰有2条即可.
当t≠0时,将m=3-2t2代入...
考点分析:
考点1:抛物线的标准方程
考点2:抛物线的几何性质
相关试题推荐
设实数x,y满足,则xy的最大值为(
(D)14 
某食品的保鲜时间(单位:小时)与储藏温度(单位:℃)满足函数关系(为自然对数的底数,为常数).若该食品在℃的保鲜时间是小时,在℃的保鲜时间是小时,则该食品在℃的保鲜时间是(
)(A)16小时
(B)20小时
(C)24小时
(D)21小时 
过双曲线的右焦点且与x轴垂直的直线交该双曲线的两条渐近线于A、B两点,则|AB|=(
(D)4 
执行如图所示的程序框图,输出S的值为(
(B)(C)-
(D) 
下列函数中,最小正周期为π的奇函数是(
)(A)y=sin(2x+)
(B)y=cos(2x+)(C)y=sin2x+cos2x
(D)y=sinx+cosx 
题型:选择题
难度:简单
Copyright @
满分5 学习网 . All Rights Reserved.其他类似试题
23、如图,抛物线y=ax22ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
更多类似试题
Copyright ? 2011- Inc. All Rights Reserved. 17教育网站 版权所有 备案号:
站长:朱建新

我要回帖

更多关于 已知圆周长求直径 的文章

 

随机推荐