已知抛物线y x2F(X)=X1X2+2(X2的平方)+4,则F(X)在点X零={-1 1}的最大变化率?

已知函数 f(x)在R上满足f(x)=2f(2-x)-x2+8x-8 ,则曲线y=f(x) 在点1,f(1) 处的切线方程是?求详解那儿是x的平方+8x-8,_百度作业帮
已知函数 f(x)在R上满足f(x)=2f(2-x)-x2+8x-8 ,则曲线y=f(x) 在点1,f(1) 处的切线方程是?求详解那儿是x的平方+8x-8,
求详解那儿是x的平方+8x-8,
令t=2-x,则x=2-t,代入方程得f(2-t)=2f(t)-(2-t)^2+8(2-t)-8=2f(t)-t^2-4t+4则求出f(2-x)=2f(x)-x^2-4x+4,代入上式得f(x)=2[2f(x)-x^2-4x+4]-x^2+8x-8则f(x)=x^2,对f(x)求导f(x)'=2x,x=1时,k=f(1)'=2,由点斜式写出方程为y-1=2(x-1)则y=2x-1是此函数在(1,f(1))处的切线方程.当前位置:
>>>已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.(Ⅰ)用xn表示xn+1;(Ⅱ)若x1=4,记an=lgxn+2xn-2,证明数列{an}成等比数列,并求数列{xn}的通项公式;(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
题型:解答题难度:中档来源:四川
(Ⅰ)由题可得f′(x)=2x.所以曲线y=f(x)在点(xn,f(xn))处的切线方程是:y-f(xn)=f′(xn)(x-xn).即y-(xn2-4)=2xn(x-xn).令y=0,得-(xn2-4)=2xn(xn+1-xn).即xn2+4=2xnxn+1.显然xn≠0,∴xn+1=xn2+2xn.(Ⅱ)由xn+1=xn2+2xn,知xn+1+2=xn2+2xn+2=(xn+2)22xn,同理xn+1-2=(xn-2)22xn,故xn+1+2xn+1-2=(xn+2xn-2)2.从而lgxn+1+2xn+1-2=2lgxn+2xn-2,即an+1=2an.所以,数列{an}成等比数列.故an=2n-1a1=2n-1lgx1+2x1-2=2n-1lg3.即lgxn+2xn-2=2n-1lg3.从而xn+2xn-2=32n-1所以xn=2(32n-1+1)32n-1-1(Ⅲ)由(Ⅱ)知xn=2(32n-1+1)32n-1-1,∴bn=xn-2=432n-1-1>0∴bn+1bn=32n-1-132n-1=132n-1+1<132n-1≤1321-1=13当n=1时,显然T1=b1=2<3.当n>1时,bn<13bn-1<(13)2bn-2<<(13)n-1b1∴Tn=b1+b2+…+bn<b1+13b1+…+(13)n-1b1=b1[1-(13)n]1-13=3-3o(13)n<3.综上,Tn<3(n∈N*).
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..”主要考查你对&&等比数列的定义及性质,数列求和的其他方法(倒序相加,错位相减,裂项相加等)&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
等比数列的定义及性质数列求和的其他方法(倒序相加,错位相减,裂项相加等)
等比数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。 等比数列的性质:
在等比数列{an}中,有 (1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2; (2)若m,n∈N*,则am=anqm-n; (3)若公比为q,则{}是以为公比的等比数列; (4)下标成等差数列的项构成等比数列; (5)1)若a1>0,q>1,则{an}为递增数列; 2)a1<0,q>1, 则{an}为递减数列; 3)a1>0,0<q<1,则{an}为递减数列; 4)a1<0, 0<q<1, 则{an}为递增数列; 5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。
等差数列和等比数列的比较:
如何证明一个数列是等比数列:
证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。 数列求和的常用方法:
1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和; 2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法; 3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:& 数列求和的方法多种多样,要视具体情形选用合适方法。 数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。
发现相似题
与“已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..”考查相似的试题有:
273782492247876652293154254177880902扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
最优设计1-2
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口当前位置:
>>>已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数。(1)用xn表示xn+1;(2)若x1=4,记,证明数列{an}成等比数列,并求数列{xn}的通项公式;(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3。
题型:解答题难度:偏难来源:四川省高考真题
解:(1)由题可得所以曲线在点处的切线方程是:即令得即显然∴。(2)由知同理故从而即所以数列成等比数列故即从而所以。(3)由(2)知∴∴当时,显然当时,∴综上,。
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..”主要考查你对&&等比数列的前n项和,导数的概念及其几何意义,等比数列的定义及性质,一般数列的通项公式,反证法与放缩法&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
等比数列的前n项和导数的概念及其几何意义等比数列的定义及性质一般数列的通项公式反证法与放缩法
等比数列的前n项和公式:
; 等比数列中设元技巧:
已知a1,q,n,an ,Sn中的三个量,求其它两个量,是归结为解方程组问题,知三求二。 注意设元的技巧,如奇数个成等比数列,可设为:…,…(公比为q),但偶数个数成等比数列时,不能设为…,…因公比不一定为一个正数,公比为正时可如此设。
等比数列前n项和公式的变形:q≠1时,(a≠0,b≠0,a+b=0);
等比数列前n项和常见结论:一个等比数列有3n项,若前n项之和为S1,中间n项之和为S2,最后n项之和为S3,当q≠-1时,S1,S2,S3为等比数列。 平均变化率:
一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率&&上式中的值可正可负,但不为0.f(x)为常数函数时,&
瞬时速度:如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.
函数y=f(x)在x=x0处的导数的定义:
一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作或,即。
如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=
切线及导数的几何意义:
(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。 (2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=。瞬时速度特别提醒:
①瞬时速度实质是平均速度当时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,
&函数y=f(x)在x=x0处的导数特别提醒:
①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:&&&&
导函数的特点:
①导数的定义可变形为: ②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,③可导的周期函数其导函数仍为周期函数,④并不是所有函数都有导函数.⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).
导数的几何意义(即切线的斜率与方程)特别提醒:
①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,④显然f′(x0)&0,切线与x轴正向的夹角为锐角;f′(x0)&o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.等比数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。 等比数列的性质:
在等比数列{an}中,有 (1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2; (2)若m,n∈N*,则am=anqm-n; (3)若公比为q,则{}是以为公比的等比数列; (4)下标成等差数列的项构成等比数列; (5)1)若a1>0,q>1,则{an}为递增数列; 2)a1<0,q>1, 则{an}为递减数列; 3)a1>0,0<q<1,则{an}为递减数列; 4)a1<0, 0<q<1, 则{an}为递增数列; 5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。
等差数列和等比数列的比较:
如何证明一个数列是等比数列:
证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。 一般数列的定义:
如果数列{an}的第n项an与序号n之间的关系可以用一个式子表示成an=f(n),那么这个公式叫做这个数列的通项公式。
&通项公式的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式; (2)构造等差数列:递推式不能构造等比数列时,构造等差数列; (3)递推:即按照后项和前项的对应规律,再往前项推写对应式。已知递推公式求通项常见方法:①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1&+λ=q(an+λ)进而得到λ。②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。反证法的定义:
有些不等式无法利用题设的已知条件直接证明,我们可以用间接的方法——反证法去证明,即通过否定原结论——导出矛盾——从而达到肯定原结论的目的。
放缩法的定义:
把原不等式放大或缩小成一个恰好可以化简的形式,比较常用的方法是把分母或分子适当放大或缩小(减去或加上一个正数)使不等式简化易证。 反证法证题的步骤:
若A成立,求证B成立。共分三步:(1)提出与结论相反的假设;如负数的反面是非负数,正数的反面是非正数即0和负数;(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进行推理否则不是反证法或证错);(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相矛盾。反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。
放缩法的意义:
放缩法理论依据是不等式的传递性:若,a&b,b&c,则a&c.
放缩法的操作:
若求证P&Q,先证P&P1&P2&…&Pn,再证恰有Pn&Q.需注意:(1)只有同方向才可以放缩,反方向不可。(2)不能放(缩)得太大(小),否则不会有最后的Pn&Q.
发现相似题
与“已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的..”考查相似的试题有:
524361457515263196521986482196523039当前位置:
>>>已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,..
已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,且f(1)=-6<0,f(4)=6>0,由零点存在性定理可知函数在[1,4]内有零点,用二分法求解时,取(1,4)的中点a,则f(a)=______.
题型:填空题难度:中档来源:不详
由于(1,4)的中点为2.5,求得f(2.5)=2.52-2.5-6=-2.25,故答案为-2.25.
马上分享给同学
据魔方格专家权威分析,试题“已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,..”主要考查你对&&用二分法求函数零点的近似值&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
用二分法求函数零点的近似值
二分法的定义:
对于区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似解的方法叫做二分法。
给定精确度ξ,用二分法求函数f(x)的零点的近似值的步骤:
(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ; (2)求区间(a,b)的中点x1; (3)计算f(x1), ①若f(x1)=0,则就是函数的零点; ②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1)); ③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)); (4)判断是否达到精确度ξ,即若|a-b|<ξ,则达到零点近似值a(或b);否则重复(2)-(4)。 利用二分法求方程的近似解的特点:
(1)二分法的优点是思考方法非常简明,缺点是为了提高解的精确度,求解的过程比较长,有些计算不用计算工具甚至无法实施,往往需要借助于科学计算器.(2)二分法是求实根的近似计算中行之有效的最简单的方法,它只要求函数是连续的,因此它的使用范围很广,并便于在计算机上实现,但是它不能求重根,也不能求虚根。&关于用二分法求函数零点近似值的步骤应注意以下几点:
①第一步中要使区间长度尽量小,f(a),f(b)的值比较容易计算,且f(a).f(b)&0;②根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的,对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方程f(x)=g(x)的根;③设函数的零点为x0,则a&x0&b,作出数轴,在数轴上标出a,b,x0对应的点,如图,所以0&x0-a&b-a,a一b&x0-b&0.由于|a -b|&ε,所以|x0 -a|&b-a&ε,|x0 -b|&|a -b|&ε即a或b作为函数的零点x0的近似值都达到给定的精确度ε&&&&④我们可用二分法求方程的近似解.由于计算量大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.
发现相似题
与“已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,..”考查相似的试题有:
246886475234328963618248328964279136

我要回帖

更多关于 已知抛物线y x2 的文章

 

随机推荐