结构力学求解器方程式

 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
Matlab中方程求解的基本命令
下载积分:1000
内容提示:Matlab中方程求解的基本命令
文档格式:PPT|
浏览次数:45|
上传日期: 16:40:14|
文档星级:
该用户还上传了这些文档
Matlab中方程求解的基本命令.PPT
道客巴巴认证
机构认证专区
加  展示
享受成长特权
官方公共微信一元三次方程求根公式_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&一元三次方程求根公式
三次方程是未知项总次数最高为3的,一元三次方程一般形式为aX3+bX2+cX+d=0(a,b,c,d∈R,且a≠0),其中a, b,c和d (a≠0)是属于一个的数字,通常这个域为或。南宋数学家秦九韶至晚在1247年就已经发现一元三次方程的求根公式,欧洲人在400多年后才发现,但在中国的课本上这个公式仍是以那个欧洲人的名字来命名的。方&&&&程aX^3+bX^2+cX+d=0x未知数常&&&&数d条&&&&件a,b,c,d∈R,且a≠0
(如右图所示)
若用A、B换元后,公式可简记为:
x1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。当△=(q/2)^2+(p/3)^3&0时,有一个实根和一对个共轭;
当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等;
当△=(q/2)^2+(p/3)^3&0时,有三个不相等的实根。第一步:
ax^3+bx^2+cx+d=0(a≠0)
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=-k^2/3+m ,
q=(2(k/3)^3)-(km/3)+n。
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+sx^2+tx+u=0的形式。
再令x=y-s/3,代入可消去次高项,变成x^3+px+q=0的形式。
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,
由一元二次方程u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
则u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
一元三次方程x^3+px+q=0,(p,q∈R)的求根公式是1545年由意大利学者卡尔丹发表在《关于代数的大法》一书中,人们就把它叫做(有的数学资料叫“”)。可是事实上,发现公式的人并不是卡尔卡尔丹丹(卡丹)本人,而是(Tartaglia N.,约)。发现此公式后,曾据此与许多人进行过解题竞赛,他往往是胜利者,因而他在意大利名声大震。医生兼数学家卡丹得知塔塔利亚总是获胜的消息后,就千方百计地找塔塔利亚探听他的秘密。当时学者们通常不急于把自己所掌握的秘密向周围的人公开,而是以此为秘密武器向别人挑战比赛,或等待悬赏应解,以获取奖金。 尽管卡尔丹千方百计地想探听塔塔利亚的秘密,但是在很长时间中塔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且发誓对此保守秘密,于是塔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 卡丹并没有信守自己的誓言,1545年在其所著《重要的艺术》一书中向世人公开了这个解法。他在此书中写道:“这一解法来自于一位最值得尊敬的朋友--布里西亚的塔塔利亚。塔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为卡丹公式。 塔塔利亚知道卡丹把自己的秘密公之于众后,怒不可遏。按照当时人们的观念,卡丹的做法无异于背叛,而关于发现法则者是谁的附笔只能被认为是一种欧拉公开的侮辱。于是塔塔利亚与卡丹在米兰市的教堂进行了一场公开的辩论。 许多资料都记述过塔塔利亚与卡丹在一元三次方程求根公式问题上的争论,可是,名为卡丹公式的一元三次方程的求解方法,确实是塔塔利亚发现的;卡丹没有遵守誓言,因而受到塔塔利亚及许多文献资料的指责,卡丹错有应得,但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程解法的进程。不过,公式的名称,还是应该称为方塔纳公式或塔塔利亚公式;称为卡丹公式是历史的误会。 一元三次方程应有三个根。塔塔利亚公式给出的只是一个实根。又过了大约200年后,随着人们对认识的加深,到了1732年,才由瑞士数学家找到了一元三次方程三个根的完整的表达式。
是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了,他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。这时,意大利数学家卡丹出场,请求塔尔塔利把的方法告诉他,可是遭到了拒绝。后来卡丹对塔尔塔利假装说要推荐他去当西班牙炮兵顾问,并称自己有许多发明,唯独无法解三次方程而内心痛苦。还发誓,永远不泄漏塔尔塔利亚式的秘密。塔尔塔利亚这才把的秘密告诉了卡丹。六年以后,卡丹不顾原来的信约,在他的著作《关于代数的大法》中,将经过改进的三次方程的解法公开发表。后人就把这个方法叫作,塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。
塔尔塔利亚对卡丹的背信行为非常恼怒,互相写信指骂对方。最终在一个不明的夜晚,卡丹派人秘密刺杀了塔尔塔利亚。
至于ax^4 +bx^3 +cx^2 +dx+e=0求根公式由卡丹的学生找到了。
关于三次、的求根公式,因为要涉及概念,复数是指能写成如下形式的数a+bi,这里a和b是实数,i是单位(即-1开根)。 由意大利米兰学者在十六世纪首次引入,经过达朗贝尔、棣莫弗、、等人的工作,此概念逐渐为数学家所接受。 复数有多种表示法,诸如表示、三角表示,指数表示等。它满足等性质。它是、、、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。
阿贝一元三次、四次方程求根公式找到后,人们在努力寻找求根公式,三百伽罗华年过去了,但没有人成功,这些经过尝试而没有得到结果的人当中,不乏有。
后来年轻的挪威数学家于1824年所证实, n次方程(n≥5)没有公式解。不过,对这个问题的研究,其实并没结束,因为人们发现有些n次方程(n≥5)可有求根公式。那么又是什么样的一元n次方程才没有求根公式呢?
不久,这一问题在19世纪上半期,被法国天才数学家利用他创造的全新的所证明,由此一门新的数学分支“”诞生了。 和根的关系如下:
求出X,Y,后有
这是个,其中
为原方程的三个根!
新手上路我有疑问投诉建议参考资料 查看迅雷下载:
流行软件下载排行
eNet热门在线影音软件
eNet热门图像处理软件
解方程软件
语言种类:简体中文
版 本 号:1.1
发布日期:
文件大小:3296K
软件等级:
系统平台:Win 95/98/ME/2000/XP/2003/vista
软件厂商:
软件类型:共享
厂商邮件:
界面预览:暂无
本类其它优秀软件推荐
软件简介:该软件(SolveEquation)实现了解方程的计算方法。主要包括多元方程组(线性方程组)的数值解法、非线性方程的数值解法常微分方程的数值解法。
解方程软件
  线性方程组的数值解法:
线性方程组亦即多元一次方程组。在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的解}。该部分就是针对线性方程组求解而设计的,内容包括:线性方程组的直接解法:Gauss消去法、Gauss列主元消去法、Gauss全主元消去法、列主元消去法应用『列主元求逆矩阵、列主元求行列式、矩阵的三角分解』、LU分解法、平方根法、改进的平方根法、追赶法(解三对角)、列主元三角分解法;线性方程组的迭代解法:雅可比迭代法、高斯-塞德尔迭代法、逐次超松驰迭代法;迭代法的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。
非线性方程的数值解法:
在科学研究与工程技术中常会遇到求解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有求根公式,而高于四次的代数方程则无精确的求根公式,至于超越方程就更无法求其精确解了。因此,如何求得满足一定精度要求的方程的近似根也就成为了广大科技工作者迫切需要解决的问题。该部分就是针对这一问题而设计的,内容包括:二分法、迭代法、迭代加速法、埃特金加速法、牛顿切线法、弦截法。
常微分方程的数值解法:
常微分方程的求解问题在实践中经常遇到,但我们只知道一些特殊类型的常微分方程的解析解。在科学和工程问题中遇到的常微分方程的往往很复杂,在许多问题中,并不需要方程解的表达式,而仅仅需要获得解在若干点的就算解即可。因此,研究常微分方程的的数值解就很有必要。该部分就是针对这些而设计的,内容包括:欧拉(Euler)方法、龙格库塔(Runge-Kutta)方法、线性多步方法
&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&&&|&&
网站合作、内容监督、商务咨询、投诉建议:010-
合作建议:
Copyright&2000 -
硅谷动力版权所有 京ICP证000088号 京公网安备77方程式求解問題
方程式求解問題
代數方程式是高中數學教育最基本的一環。事實上,不管時代如何的前進、數學如何的抽象化,方程式的研究一直是數學研究的核心部份。直到今日,多元高次方程式的研究(代數幾何)、Diophantus 方程式的研究(代數數論)、微分方程式的研究,仍然是最生氣蓬勃的數學分枝。
遠在北宋仁宗時代(約1050年),中國數學家賈憲已經知道如何把一個正數開 n 次方根,也就是求方程式 xn-a=0 的近似根;這個方法,中國數學家稱之為「增乘開方術」。南宋末年秦九韶(1247年)推廣賈憲的方法,得到任意方程式近似根的求法。1804年意大利數學家 P. Ruffini 得到同樣的結果。這個方法在1819年被英國一個中學教師 W.G. Horner重新發現,這就是俗稱的 Horner 方法。
更一般的,我們把數字方程式
推廣成文字方程式
,其中 a1,a2,…,an 是沒有任何關係的文字;這種方程式叫做 n 次一般方程式 (the general equation of degree n)。請注意,x4+ax2+b=0 不是四次一般方程式,因為 x 項的係為零。如果我們能夠解一般方程式的根,那麼數字方程式的求根問題當然迎刃而解。
根據 O. Neugebauer 的說法,巴比倫人在
B.C. 已經知道求二次方程式的根。七世紀的印度學者 Brahmagupta(約598~?)寫出方程式 x2+ax=b 的一個根的公式
。十二世紀的印度學者 Bhaskara(年?)更詳盡的討論一次和二次方程式。九世紀的阿拉伯數學家 Muhammad ibn Musa al-Khwarizmi(780~850年)在他的書中第一次提出二次方程式的一般解法
文藝復興時代意大利數學家發現三次與四次一般方程式的根的公式(約1545年)。方程式 x3+qx-r=0 的根的公式是
所謂根的公式,就是把代數方程式的根用其係數經過加、滅、乘、除、開方根表示出來的方法。如果我們可以求得一個(數字或文字)方程式的根的公式,我們就說這個方程式有根式解。
高中代數的 Cardano 公式告訴我們,任意三次方程式都有根式解,Ferrari 告訴我們,任意四次方程式都有根式解
因此,數學家面對一個最具挑戰性的問題:是不是任意方程式都有根式解?
或者,一個更簡單的問題:是不是任意方程式至少都有一個根?
1746年法國數學家 Jean Le Rond D'Alembert「代數基本定理」:
任意 n 次複數方程式恰有 n 個複數根。D'Alembert 的證明其實是錯的,雖然這個定理的敘述是正確的。第一個正確的證明是偉大的 Karl Friedrich Gauss 在二十歲(1797年)提出的。此後 Gauss 又提出另外三種證明。
「代數基本定理」出現之後,根的存在性問題完全解決。接著最自然的問題是,用什麼方式才能把這些根求出來?能不能只用係數的加、減、乘、除、開方根就把這些根表示出來(即「根式解」)?很明顯的,方程式
x5+x4+x3+x2+x+1=0 與 x5+2=0 都有根式解
。但是,一般五次方程式是不是有根式解?
十六世紀以來,有許多數學家研究五次一般方程式的根式解問題。在沒有解決這個問題之下,他們轉而探討一些更根本性的問題,例如:
根的存在性問題(即「代數基本定理」)。
根與係數的關係,根的個數,檢驗重根的方法,檢驗兩個方程式有公解的方法。
求數字方程式的近似根。
給定某個實係數方程式,並給定一個範圍(例如 0 到 100),估計在此範圍內實數根的數目。
因式分解是解數字方程式的第一步。研究因式分解是極為重要的。
第一個問題:對於有理數係數的單變數多項式,如何有效的進行因式分解?
第二個問題,多變數多項式能否進行因式分解?
第三個問題,因式分解是否有唯一性?
法國數學家 Joseph Louis Lagrange 在年綜合前人解方程式的各種方法,歸納出一個一般性的模式。Lagrange 的洞察力在研究方程式根式解的領域打開一條新的道路。沿著 Lagrange 指示的方向,Paolo Ruffini(年)、Niels Henrick Abel(年)、Évariste Galois(年)終於解決了方程式根式解的問題。Alexandre Theophile Vandermond 在1770年提出和 Lagrange 同樣的觀察,可惜他的結果沒有被當時的人注意。因此,所謂「預解式」的成果就由 Lagrange 所獨享,後世也稱為「Lagrange 預解式」。
從1799年開始,意大利數學家 Ruffini 就提出幾種方法,證明一般五次方程式不可能有根式解。Ruffini 的證明雖有不少創見,卻有許多漏洞,當時的人並不接受他的證明。
1826年挪威數學家 Abel 證明:一般五次方程式沒有根式解。Abel 又說,五次以上的一般方程式的討論方法與五次類似。Abel 的證明有一個漏洞,經愛爾蘭數學家 William Rowan Hamilton(年)加以補充說明。因此可以說,Abel 完全解決了一般五次方程式沒有根式解的問題。
但是一般方程式沒有根式解,並不表示所有的數字方程式都沒有根式解。事實上,方程式 2x5+5=0 有根式解,但是 2x5-10x+5=0 沒有根式解。法國數學家 Galois 在1832年提出任意(數字或文字)方程式有根式解的充分必要條件。Galois 把方程式求解問題轉化成置換群 (permutation group) 的問題。他在繁複的計算中洞見方程式求解的本質。
Galois 的方法其實只是一個豐富深遂的理論的一個應用。這個理論就是我們習稱的 Galois 理論。Galois 在二十一歲死於決鬥。他在決鬥前夜寫一封給友人的信,再度的簡單解釋 Galois 理論的要點,因為當時許多成名的數學家,如 S.D. Poisson、S.F. Lacroix,都不能瞭解他的理論。Galois 說,更進一步探討這個理論足夠讓後代的數學家受益良多。所謂方程根式解的問題,可以看做 Galois 理論的一個習題。大多數人看到的冰山只是其浮出海面的一角,Galois 理論何嘗不是如此?
1858年法國數學家 Charles Hermite 證明五次一般方程式的根可以用其係數經過加、減、乘、除、開方和橢圓函數的組合,表示出來。1880年法國數學家 Henri Poincaré 發現 n 次一般方程式的根可以用其係數經過加、減、乘、除、開方和 Fuchs 函數的組合,表示出來。這其實是黎曼面理論的均勻化問題 (uniformization problem) 的應用。
(若有指正、疑問……,可以在此
給我們。)

我要回帖

更多关于 结构力学求解器教程 的文章

 

随机推荐