#高考提分#解析几何的基本解题思路是怎样的。 2012高考2012浙江春晚命题的解析几何的命题方向是什么

2014高考数学“拿分题”训练(知识整合+方法技巧+例题分析):解析几何、立体几何
2014高考数学“拿分题”训练(知识整合+方法技巧+例题分析):解析几何、立体几何
2014高考数学“拿分题”训练:解析几何问题的题型与方法
一、知识整合
高考中解析几何试题一般共有4题(2个选择题, 1个填空题,
1个解答题),共计30分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。[来源:]
能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二、近几年高考试题知识点分析
2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.
1.选择、填空题
1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
(04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2(04辽宁)已知点、,动点P满足. 当点P的纵坐标是时,点P到坐标原点的距离是
(A) (B) (C) (D)2
1.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查
例3(04天津文)若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是
(A) (B)
(C) (D)
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
例4(04江苏)已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M. 若,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.
解:(I)设所求椭圆方程是
由已知,得
故所求的椭圆方程是
(II)设Q(),直线
当由定比分点坐标公式,得
于是 故直线l的斜率是0,.
例5(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.
双曲线的离心率
由于x1,x2都是方程①的根,且1-a2≠0,
例6(04全国文科Ⅱ)给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点.
(Ⅰ)设的斜率为1,求夹角的大小;
(Ⅱ)设,求在轴上截距的变化范围.
解:(Ⅰ)C的焦点为F(1,0),直线l的斜率为1,所以l的方程为
将代入方程,并整理得
所以夹角的大小为
(Ⅱ)由题设 得
由②得, ∵
联立①、③解得,依题意有
∴又F(1,0),得直线l方程为
[来源:学,科,网Z,X,X,K]
当时,l在方程y轴上的截距为
可知在[4,9]上是递减的,
直线l在y轴上截距的变化范围为
从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.
三、热点分析与2005年高考预测
1.重视与向量的综合
在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.
例7(02年新课程卷)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中a、b∈R,且a+b=1,则点C的轨迹方程为
(A)(x-1)2+(y-2)2=5
(B)3x+2y-11=0
(C)2x-y=0 (D)x+2y-5=0
例8(04辽宁)已知点、,动点,则点P的轨迹是
(A)圆 (B)椭圆 (C)双曲线 (D)抛物线
2.考查直线与圆锥曲线的位置关系几率较高
在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.
3.与数列相综合
在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.
例9(04年浙江卷)如图,ΔOBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),
(Ⅰ)求及;
(Ⅱ)证明
(Ⅲ)若记证明是等比数列.[来源:学科网ZXXK]
解:(Ⅰ)因为,所以,又由题意可知,
∴== ∴为常数列.∴[来源:学&科&网]
(Ⅱ)将等式两边除以2,得
∴是公比为的等比数列.
4.与导数相综合
近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.
例10(04年湖南文理科试题)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m&0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。
(I)设点P分有向线段所成的比为,证明:
(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得 ①
设A、B两点的坐标分别是 、、x2是方程①的两根.
由点P(0,m)分有向线段所成的比为,得
又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而.
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
得 所以抛物线 在点A处切线的斜率为
设圆C的方程是则
所以圆C的方程是 即
5.重视应用
在历年的高考试题中,经常出现解析几何的应用题,如01年的天津理科试题、03年的上海文理科试题、03年全国文科旧课程卷试题、03年的广东试题及江苏的线性规划题等,都是有关解析几何的应用题.
例11(04年广东试题)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.
已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s
:相关各点均在同一平面上)
解:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020)
设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|- |PA|=340×4=1360
由双曲线定义知P点在以A、B为焦点的双曲线上,
依题意得a=680, c=1020,
[来源:学科网ZXXK]
用y=-x代入上式,得,∵|PB|&|PA|,
答:巨响发生在接报中心的西偏北450距中心处.
(二)05年高考预测
1.难度:解析几何内容是历年来高考数学试题中能够拉开成绩差距的内容之一,该部分试题往往有一定的难度和区分度,预计这一形式仍将在05年的试题中得到体现.此外,从04年分省(市)命题的情况来看,在文科类15份试卷(含文理合用的试卷)中,有9分试卷(占3/5)用解析几何大题作为最后一道压轴题,预计这一现状很有可能在05年试卷中继续重现.
2.命题内容:从今年各地的试题以及前几年的试题来看,解答题所考查的内容基本上是椭圆、双曲线、抛物线交替出现的,所以,今年极有可能考双曲线的解答题.此外,从命题所追求的目标来看,小题所涉及的内容一定会注意到知识的覆盖,兼顾到对能力的要求.
3.命题的热点:
(1)与其他知识进行综合,在知识网络的交汇处设计试题(如与向量综合,与数列综合、与函数、导数及不等式综合等);
(2)直线与圆锥曲线的位置关系,由于该部分内容体现解析几何的基本思想方法——用代数的手段研究几何问题,因此该部分内容一直是考试的热点,相信,在05年的考试中将继续体现;
(3)求轨迹方程.
(4)应用题.
四、二轮复习建议
1.根据学生的实际,有针对性地进行复习,提高复习的有效性
由于解析几何通常有2-3小题和1大题,约占28分左右,而小题以考查基础为主、解答题的第一问也较容易,因此,对于全市的所有不同类型的学校,都要做好该专题的复习,千万不能认为该部分内容较难而放弃对该部分内容的专题复习,并且根据生源状况有针对性地进行复习,提高复习的有效性.
2.重视通性通法,加强解题指导,提高解题能力
在二轮复习中,不能仅仅复习概念和性质,还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体,在二轮复习中强化各类问题的常规解法,使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程,解题能力只有通过学生的自主探究才能掌握.所以,在二轮复习中,教师的作用是对学生的解题方法进行引导、点拨和点评,只有这样,才能够实施有效复习.
3.注意强化思维的严谨性,力求规范解题,尽可能少丢分
在解解析几何的大题时,有不少学生常出现因解题不够规范而丢分的现象,因此,要通过平时的讲评对易出现错误的相关步骤作必要的强调,减少或避免无畏的丢分.
例14(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得
(1-a2)x2+2a2x-2a2=0.
双曲线的离心率
还有,在设直线方程为点斜式时,就应该注意到直线斜率不存在的情形;又如,在求轨迹方程时,还要注意到纯粹性和完备性等.
五、参考例题
例1、若直线mx+y+2=0与线段AB有交点,其中A(-2, 3),B(3,2),求实数m的取值范围。
解:直线mx+y+2=0过一定点C(0,
-2),直线mx+y+2=0实际上表示的是过定点(0,
-2)的直线系,因为直线与线段AB有交点,则直线只能落在∠ABC的内部,设BC、CA这两条直线的斜率分别为k1、k2,则由斜率的定义可知,直线mx+y+2=0的斜率k应满足k≥k1或k≤k2,
∵A(-2, 3) B(3, 2)
∴-m≥或-m≤ 即m≤或m≥
说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx+y+2=0的斜率-m应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB内部变化时,k应大于或等于kBC,或者k小于或等于kAC,当A、B两点的坐标变化时,也要能求出m的范围。
例2、已知x、y满足约束条件
x-3y≤-4,
3x+5y≤30,
求目标函数z=2x-y的最大值和最小值.
解:根据x、y满足的约束条件作出可行域,即如图所示的阴影部分(包括边界).
作直线:2x-y=0,再作一组平行于的直线:2x-y=t,t∈R.
可知,当在的右下方时,直线上的点(x,y)满足2x-y>0,即t>0,而且直线往右平移时,t随之增大.当直线平移至的位置时,直线经过可行域上的点B,此时所对应的t最大;当在的左上方时,直线上的点(x,y)满足2x-y<0,即t<0,而且直线往左平移时,t随之减小.当直线平移至的位置时,直线经过可行域上的点C,此时所对应的t最小.
x-3y+4=0,
由 解得点B的坐标为(5,3);
3x+5y-30=0,
由 解得点C的坐标为(1,).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.
例3、 已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.
解:(1)由,可得由射影定理,得
在Rt△MOQ中,
所以直线AB方程是
(2)连接MB,MQ,设由
点M,P,Q在一直线上,得
由射影定理得
即 把(*)及(**)消去a,
并注意到,可得
说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例4、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得 .
设的中点是,则
故所求k=±.
说明:为了求出的值, 需要通过消元, 想法设法建构的方程.
例5、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围;
解:(1)∵,∴。
∵是共线向量,∴,∴b=c,故。
当且仅当时,cosθ=0,∴θ。
说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。
2014高考数学“拿分题”训练:立体几何
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内.
选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提.
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看,
以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.
一、知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.
2.判定两个平面平行的方法:
(1)根据定义——证明两平面没有公共点;
(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那
么它们的交线平行”。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,],直线与平面所成的角θ∈,二面角的大小,可用它们的平面角来度量,其平面角θ∈0,π.
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.
如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角a-l-b的平面角(记作q)通常有以下几种方法:
(1) 根据定义;
过棱l上任一点O作棱l的垂面g,设g∩a=OA,g∩b=OB,则∠AOB=q
(3) 利用三垂线定理或逆定理,过一个半平面a内一点A,分别作另一个平面b的垂线AB(垂足为B),或棱l的垂线AC(垂足为C),连结AC,则∠ACB=q
或∠ACB=p-q;[来源:学科网][来源:]
设A为平面a外任一点,AB⊥a,垂足为B,AC⊥b,垂足为C,则∠BAC=q或∠BAC=p-q;[来源:学科网]
利用面积射影定理,设平面a内的平面图形F的面积为S,F在平面b内的射影图形的面积为S¢,则cosq=.
5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.
求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.
6.棱柱的概念和性质
⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱
直棱柱正棱柱”这一系列中各类几何体的内在联系和区别。
⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体
直平行六面体长方体 正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。
⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。
⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。
⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.
7.经纬度及球面距离
⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O的地轴为NS,圆O是0°纬线,半圆NAS是0°经线,若某地P是在东经120°,北纬40°,我们可以作出过P的经线NPS交赤道于B,过P的纬线圈圆O1交NAS于A,那么则应有:∠AO1P=120°(二面角的平面角)
,∠POB=40°(线面角)。
⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。[来源:学。科。网Z。X。X。K]
例如,可以循着如下的程序求A、P两点的球面距离。
线段AP的长 ∠AOP的弧度数 大圆劣弧AP的长
8.球的表面积及体积公式
S球表=4πR2 V球=πR3
⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n个小三棱锥的体积=Snhn(Sn为该小三棱锥的底面积,hn为小三棱锥高),所以V球=S球面·R=·4πR2·R=πR3.
⑵球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。
二、注意事项
1. 须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。
2.三种空间角,即异面直线所成角、直线与平面所成角。平面与平面所成二面角。它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos=来求。
3.有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。
三、例题分析
例1、⑴已知水平平面内的两条相交直线a, b所成的角为,如果将角的平分线绕着其顶点,在竖直平面内作上下转动, 转动到离开水平位值的处,且与两条直线a,b都成角,则与的大小关系是 ( )
A. 或 B. &或 &&A
href="/middle/001HPFVTzy6Ft6SlILIf6&690"&
C. & D. &&A
href="/middle/001HPFVTzy6Ft6SKpaxe1&690"&
⑵已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有 ( )条.
A. 1 B. 2 C. 3 D. 4
⑶异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是 ( ).
A. 30 B. 50 C. 60 D. 90
分析与解答:
⑴ 如图1所示,易知直线上点A在平面上的射影是ι上的点B,过点B作BC⊥b,
则AC⊥b. 在Rt△OBC和Rt△OAC中,tg=,tg=.显然,AC&BC,
∴tan& tan,又、(0,,∴ >.故选C.
(2)D(3)C
例2、已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥AB;
(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异
面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由.
解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC,即△PBC和△PAC都是
以PC为斜边的直角三角形,,又M为AB的中点,∴MN⊥AB.
(2)∵AD⊥CD,PD⊥CD.∴∠PDA为所求二面角的平面角,即∠PDA=θ.
设AB=a,PA=b,AD=d,则,
设PM=CM则由N为PC的中点,∴MN⊥PC由(1)可知MN⊥AB,
∴MN为PC与AB的公垂线,这时PA=AD,∴θ=45°。
例3、如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.
解:(1)∵D是AB中点,△ABC为等腰直角三角形,
∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.
∴CD⊥平面A1B1BA
∴CD⊥AB1,又CE⊥AB1,
∴AB1⊥平面CDE;
(2)由CD⊥平面A1B1BA ∴CD⊥DE
∵AB1⊥平面CDE ∴DE⊥AB1,
∴DE是异面直线AB1与CD的公垂线段
∵CE=,AC=1 , ∴CD=∴;
(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,
∴∠B1CB是二面角B1—AC—B的平面角.
在Rt△CEA中,CE=,BC=AC=1,∴∠B1AC=600
说明:作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.
例4、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(1)求证:四边形EFCD为直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(3)设SB的中点为M,当的值是多少时,能使△DMC
为直角三角形?请给出证明.
解:(1)∵ CD∥AB,AB平面SAB
∴CD∥平面SAB
面EFCD∩面SAB=EF,
∴CD∥EF ∵
∴ 平面SAD,∴又
为直角梯形
(2)平面∥平面SAD
即为二面角D—EF—C的平面角
为等腰三角形,
(3)当时,为直角三角形 .
在中,为SB中点,.
平面平面 为直角三角形。
例5.如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,CB与CB1交于点F.
(I)求证:A1C⊥平BDC1;
(II)求二面角B—EF—C的大小(结果用反三角函数值表示).
解法一:(Ⅰ)∵A1A⊥底面ABCD,则AC是A1C在底面ABCD的射影.
∵AC⊥BD.∴A1C⊥BD.
同理A1C⊥DC1,又BD∩DC1=D,
∴A1C⊥平面BDC1.
(Ⅱ)取EF的中点H,连结BH、CH,
又E、F分别是AC、B1C的中点,
解法二:(Ⅰ)以点C为坐标原点建立如图所示的空间直角坐标系,则C(0,0,0).[来源:Z§xx§k.Com]
D(1,0,0),B(0,1,0),A1(1,1,1),C1(0,0,1),D1(1,0,1)
(Ⅱ)同(I)可证,BD1⊥平面AB1C.
发表评论:
馆藏&70963
TA的推荐TA的最新馆藏[转]&[转]&[转]&[转]&[转]&[转]&[转]&[转]&

我要回帖

更多关于 2012浙江春晚 的文章

 

随机推荐