高一数学必修1一,四,五的心得体会

轻松一扫,精彩不停
购买量排行
课程价格0.00元人教A版高一数学必修一_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
4页7下载券2页免费7页免费6页免费7页免费85页免费20页免费37页免费6页1下载券3页1下载券
人教A版高一数学必修一|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢豆丁精品文档: 高一语文必修三试卷 高一历史必修2试卷 高一英语期末试卷 高一数学..
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
高一数学必修一期末试卷及答案[1]
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口关于高一数学必修一的公式…
关于高一数学必修一的公式… 20
我这是北师大版的数学…谁帮我整理一下所有的公式?谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢
高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1.&&&&&& 集合的含义
2.&&&&&& 集合的中元素的三个特性:
(1)& 元素的确定性如:世界上最高的山
(2)& 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)& 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)& 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)& 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集& N*或 N+&& 整数集Z& 有理数集Q& 实数集R
1)& 列举法:{a,b,c……}
2)& 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R|
x-3&2} ,{x| x-3&2}
3)& 语言描述法:例:{不是直角三角形的三角形}
4)& Venn图:
4、集合的分类:
(1)& 有限集&& 含有有限个元素的集合
(2)& 无限集&& 含有无限个元素的集合
(3)& 空集&&&& 不含任何元素的集合  例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B& (5≥5,且5≤5,则5=5)
实例:设& A={x|x2-1=0} &B={-1,1}&&
“元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作AB(或BA)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B& 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
u&&&&&& 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB ={x|xA,或xB}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
(CuA) &(CuB)
(CuA) &(CuB)
A&(CuA)= Φ.
1.下列四组对象,能构成集合的是&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )
A某班所有高个子的学生& B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有&&&&& 个&
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是&&&&&&&&& .
4.设集合A=,B=,若AB,则的取值范围是&&&&& &
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有&&&&& 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=&&&&&&&&&&&&&& .
7.已知集合A={x| x2+2x-8=0},
B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:
y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
&& (3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.&
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零, &
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x
∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
A、& 描点法:
B、& 图象变换法
常用变换方法有三种
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数&&
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则
y=f[g(x)]=F(x)(x∈A)&
称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1&x2时,都有f(x1)&f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1&x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
1 任取x1,x2∈D,且x1&x2;
2 作差f(x1)-f(x2);
3 变形(通常是因式分解和配方);
4 定号(即判断差f(x1)-f(x2)的正负);
5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
1首先确定函数的定义域,并判断其是否关于原点对称;
2确定f(-x)与f(x)的关系;
3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由
f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
待定系数法
10.函数最大(小)值(定义见课本p36页)
1 利用二次函数的性质(配方法)求函数的最大(小)值
2 利用图象求函数的最大(小)值
3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
1.求下列函数的定义域:
⑴&&&&&&& ⑵&&&
2.设函数的定义域为,则函数的定义域为_& _&&
3.若函数的定义域为,则函数的定义域是&&&&&&&&
4.函数&,若,则=&&&&&&&&&&&
5.求下列函数的值域:
⑴&& &&&&&&&&⑵&
(3)&&&&&&&&&&&&&& (4)
6.已知函数,求函数,的解析式
7.已知函数满足,则=&&&&&&&&&&&& 。
8.设是R上的奇函数,且当时,,则当时=&&&
&&在R上的解析式为&&&&&&&&&&&&&&&&&&&&&&&
9.求下列函数的单调区间:
&⑴ &&⑵& ⑶
10.判断函数的单调性并证明你的结论.
11.设函数判断它的奇偶性并且求证:.
第二章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根,其中&1,且∈*.
负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)·&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ;
(2)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ;
(3)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
在R上单调递增
在R上单调递减
非奇非偶函数
非奇非偶函数
函数图象都过定点(0,1)
函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(— 底数,— 真数,— 对数式)
说明:1 注意底数的限制,且;
3 注意对数的书写格式.
两个重要对数:
1 常用对数:以10为底的对数;
2 自然对数:以无理数为底的对数的对数.
u&&&&&& 指数式与对数式的互化
&&&&&&&&&&&&&
幂值&&&&& 真数
&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&& 底数
&&&&&&&&&& 指数&&&&&&&&&&&&& 对数
(二)对数的运算性质
如果,且,,,那么:
注意:换底公式
& (,且;,且;).
利用换底公式推导下面的结论
(1);(2).
(二)对数函数
1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,&都不是对数函数,而只能称其为对数型函数.
2 对数函数对底数的限制:,且.
2、对数函数的性质:
定义域x>0
定义域x>0
函数图象都过定点(1,0)
函数图象都过定点(1,0)
(三)幂函数
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
1. 已知a&0,a0,函数y=ax与y=loga(-x)的图象只能是       (  )
       
2.计算: ①&&&&&&&& ;②=&&&&&&& ;=&&&&&&&& ;
③& =&&&&&&&&
3.函数y=log(2x2-3x+1)的递减区间为 &&&&&&&&&&
4.若函数在区间上的最大值是最小值的3倍,则a=&& &&&&
5.已知,(1)求的定义域(2)求使的的取值范围
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
1 (代数法)求方程的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
其他回答 (4)
两角和公式&sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA&cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB&tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)&ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)&倍角公式&tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga&cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a&半角公式&sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)&cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)&tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))&ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))&和差化积&2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)&2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)&sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)&tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB&ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB&某些数列前n项和&1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2&2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3&正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径&余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角&弧长公式 l=a*r a是圆心角的弧度数r &0 扇形面积公式 s=1/2*l*r&乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)&三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b&=&-b≤a≤b&|a-b|≥|a|-|b| -|a|≤a≤|a|&一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a&根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理&判别式&b2-4ac=0 注:方程有两个相等的实根&b2-4ac&0 注:方程有两个不等的实根&b2-4ac&0 注:方程没有实根,有共轭复数根&降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2万能公式&令tan(a/2)=t&sina=2t/(1+t^2)&cosa=(1-t^2)/(1+t^2)&tana=2t/(1-t^2)
不好意思,我要的是北师大的…你这不是
一)两角和差公式 (写的都要记) sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA ? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 二)用以上公式可推出下列二倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 (上面这个余弦的很重要) sin2A=2sinA*cosA 三)半角的只需记住这个: tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 四)用二倍角中的余弦可推出降幂公式 (sinA)^2=(1-cos2A)/2 (cosA)^2=(1+cos2A)/2 五)用以上降幂公式可推出以下常用的化简公式 1-cosA=sin^(A/2)*2 1-sinA=cos^(A/2)*2 + 一)两角和差公式 (写的都要记) sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA ? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 二)用以上公式可推出下列二倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 (上面这个余弦的很重要) sin2A=2sinA*cosA 三)半角的只需记住这个: tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 四)用二倍角中的余弦可推出降幂公式 (sinA)^2=(1-cos2A)/2 (cosA)^2=(1+cos2A)/2 五)用以上降幂公式可推出以下常用的化简公式 1-cosA=sin^(A/2)*2 1-sinA=cos^(A/2)*2公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos→tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 其他三角函数知识: 同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 倍角公式 ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦和正切公式(降幂扩角公式) 1-cosα sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2) sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式 ⒍三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α) tan3α=—————— 1-3tan^2(α) 三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆 记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。 和差化积公式 ⒎三角函数的和差化积公式 α+β α-β sinα+sinβ=2sin—----·cos—--- 2 2 α+β α-β sinα-sinβ=2cos—----·sin—---- 2 2 α+β α-β cosα+cosβ=2cos—-----·cos—----- 2 2 α+β α-β cosα-cosβ=-2sin—-----·sin—----- 2 2 积化和差公式 ⒏三角函数的积化和差公式 sinα ·cosβ=0.5[sin(α+β)+sin(α-β)] cosα ·sinβ=0.5[sin(α+β)-sin(α-β)] cosα ·cosβ=0.5[cos(α+β)+cos(α-β)] sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)] 和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 向量的运算 加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ & 0时,λa的方向和a的方向相同,当λ & 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作aob,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 aob的几何意义:数量积aob等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。
不好意思,我要的是北师大的…
你加我QQ号&&& 去我空间看吧&&& 哪有好几篇呢&&& 全是高中的
只有自己整理才知到数学的美丽,他人的成果你是不可以也是不可能得到的,还是自己弄吧,孩子!
哭哭,就是因为自己整理不全才问的别人…
相关知识等待您来回答
数学领域专家

我要回帖

更多关于 高一数学必修1 的文章

 

随机推荐