△ABC中,∠C=90°,已知在三角形abc中AB=3...

当前位置:
>>>如图,在Rt△ABC中,∠C=90°.(1)如果BD是∠ABC的平分线,DE⊥AB,DC=..
如图,在Rt△ABC中,∠C=90°.(1)如果BD是∠ABC的平分线,DE⊥AB,DC=3,那么易知DE=______.(2)如果在AB上取点E,使BE=BC,然后画DE⊥AB交AC于点D,那么BD就是∠ABC的平分线.请写出证明过程.
题型:解答题难度:中档来源:不详
(1)∵在Rt△ABC中,∠C=90°,即CD⊥BC,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DC,∵DC=3,∴DE=3;故答案为:3;(2)证明:∵在Rt△ABC中,∠C=90°,DE⊥AB,∴∠BED=∠C=90°,在Rt△BCD和Rt△BED中,∵BC=BEBD=BD,∴Rt△BCD≌Rt△BED(HL),∴∠CBD=∠EBD,∴BD就是∠ABC的平分线.
马上分享给同学
据魔方格专家权威分析,试题“如图,在Rt△ABC中,∠C=90°.(1)如果BD是∠ABC的平分线,DE⊥AB,DC=..”主要考查你对&&勾股定理,角平分线的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
勾股定理角平分线的性质
勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。定理作用⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。勾股定理的应用:数学从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。生活勾股定理在生活中的应用也较广泛,举例说明如下:1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2、2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。通俗来说,就是分三步走:第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。角平分线:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。角平方线定理:①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。②角平分线能得到相同的两个角,都等于该角的一半。③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。逆定理:在角的内部,到角两边的距离相等的点在角平分线上。角平分线作法:在角AOB中,画角平分线方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。3.作射线OP。则射线OP为角AOB的角平分线。当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。方法二:1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;2.连接AN与BM,他们相交于点P;3.作射线OP。则射线OP为角AOB的角平分线。
发现相似题
与“如图,在Rt△ABC中,∠C=90°.(1)如果BD是∠ABC的平分线,DE⊥AB,DC=..”考查相似的试题有:
51701513139234344799049111293366598如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒
练习题及答案
如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。设点P、Q运动的时间是t秒(t>0),
(1)当t=2时,AP=________,点Q到AC的距离是________;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值。若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值。
题型:解答题难度:偏难来源:江苏期中题
所属题型:解答题
试题难度系数:偏难
答案(找答案上)
解:(1)1;;(2)作QF⊥AC于点F,AQ=CP= t,∴AP=3-t,由△AQF∽△ABC,,得,∴,∴,即。
(3)能。①当DE∥QB时,如图1,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°,由△APQ∽△ABC,得,即,解得。②如图2,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ =90°, 由△AQP∽△ABC,得,即,解得。
马上分享给同学
初中二年级数学试题“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒”旨在考查同学们对
直角三角形的性质及判定、
求二次函数的解析式及二次函数的应用、
勾股定理、
梯形,梯形的中位线、
相似三角形的性质、
……等知识点的掌握情况,关于数学的核心考点解析如下:
此练习题为精华试题,现在没时间做?,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问。
考点名称:
直角三角形定义:
直角三角形满足毕氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各边和角之间的关系也是三角学的基础。
直角三角形的外心是斜边中点;其垂心是直角顶点。
若直角三角形的三边均为整数,称为毕氏三角形,其边长称为勾股数。
直角三角形的面积:
和其他三角形相同,直角三角形的面积等于任一边(底边)乘以对应高的一半。在直角三角形中.若以一股(直角边)为底边,另一股即为对应的高,因此面积为二股直角边乘积的一半,面积T的公式为
其中a和b是直角三角形的二股。
若内切圆和斜边AB相切于P点,令半周长(a + b + c) / 2为s,则PA = s & a且PB = s & b,面积可表示为
此公式只适用在直角三角形
直角三角形的三边关系:
性质1:直角三角形两直角边的平方和等于斜边的平方。
性质2:在直角三角形中,两个锐角互余。
性质3:在直角三角形中,斜边上的中线等于斜边的一半。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)×2=BD·DC,
(2)(AB)×2=BD·BC , & 射影定理图
(3)(AC)×2=CD·BC 。 & 等积式
(4)ABXAC=ADXBC (可用面积来证明)
(5)直角三角形的外接圆的半径R=1/2BC,
(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)
直角三角形的判定方法:
判定1:定义,有一个角为90&的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30&内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90&)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30&角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:
二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a&0);
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a&0)
(3)交点式:y=a(x-x1)(x-x2)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
求二次函数解析式的方法
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数应用解题技巧
(1)应用二次函数解决实际问题的一般思路:
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
考点名称:
勾股定理又称商高定理、毕达哥拉斯定理,简称&毕氏定理&,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)
⑴勾股定理是联系数学中最基本也是最原始的两个对象&&数与形的第一定理。
⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓&无理数&与有理数的差别,这就是所谓第一次数学危机。
⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理的应用:
从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:&今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:&一十二尺&。
勾股定理的形式:
如果c是斜边的长度而a和b是另外两条边的长度,勾股定理可以写成:
如果a和b知道,c可以这样写:
&如果斜边的长度c和其中一条边(a或b)知道, 那另一边的长度可以这样计算:
考点名称:
梯形的定义:
梯形是有且仅有一组对边平行的凸四边形。梯形平行的两条边为&底边&,分别称为&上底&和&下底&,其间的距离为&高&,不平行的两条边为&腰&。下底与腰的夹角为&底角&,上底与腰的夹角为&顶角&。
注意:广义中,平行四边形是梯形,因为它有一对边平行。狭义中,平行四边形并不是梯形,因为它有二对边平行。
梯形的中位线:
由梯形两腰的中点连成的线段称为梯形的中位线。梯形的中位线与上底和下底都平行,长度为上底与下底的长度之和的一半。
特殊的梯形:
等腰梯形:
两腰长度相等的梯形称为等腰梯形。它具有如下性质:
两条对角线相等。
同一底上的二内角相等。
对角互补,四顶点共圆。
依据以上性质,判定一个四边形是等腰梯形可以通过以下命题:
两腰相等的梯形是等腰梯形。
两条对角线相等的梯形是等腰梯形。
同一底上的二内角相等的梯形是等腰梯形。
直角梯形:
一个底角为90&的梯形是直角梯形。由于梯形的二底边平行,因此根据同旁内角关系,直角梯形一腰上的两个底角都是90&。
注意,矩形并非直角梯形,因为它虽然有一个角为90&,但不满足梯形的判定。
梯形的高公式:
a、b为梯形的底边,a不等于b。c、d为梯形的两腰。
则梯形的高:
梯形的面积公式:
其中m为中位线的长度。
以上两个公式均适用于任何梯形。
考点名称:
相似三角形定义:
对应角相等,对应边成比例的两个三角形叫做相似三角形(similar triangles)。互为相似形的三角形叫做相似三角形。
相似三角形的判定方法:
一、平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。
四、相似三角形如果两个三角形的三组对应边成比例,那么这两个三角形相似
五、对应角相等且对应边成比例的两个三角形叫做相似三角形
六、两三角形三边对应垂直,则两三角形相似。
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比
定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相关练习题推荐
与“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。点P从点C出发沿CA以每秒”相关的知识点试题(更多试题练习--)
微信沪江中考
CopyRight & 沪江网2014数学题~~~~1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速_百度知道
数学题~~~~1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速
1、如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.
解(1)作QF⊥AC于点F,如图1,AQ=CP=t,∴AP=3-t.由△AQF∽△ABC,BC= 5 2 -3 2
=4,得 QF 4 =t 5 .∴QF=4 5 t.∴①S=1 2 (3-t)&# t(0≤t≤3);②S=1 2 (t-3)&# t(3<t≤5);(3)答:在点E从B向C运动的过程中,四边形QBED能成为直角梯形①当由△APQ∽△ABC,DE∥QB时,如图2.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°.由△APQ∽△ABC,得 AQ AC =AP AB ,即 t 3 =3-t 5 .解得 t=9 8 ;②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得 AQ AB =AP AC ,即 t 5 =3-t 3 . t=15 8 .
其他类似问题
其他3条回答
解:(1)作QF⊥AC于点F,如图1,AQ=CP=t,∴AP=3-t.由△AQF∽△ABC,BC=&5&2&-3&2&&=4,得&QF&4&=t&5&.∴QF=4&5&t.∴①S=1&2&(3-t)&#&t(0≤t≤3);②S=1&2&(t-3)&#&t(3<t≤5);(2)能.①当由△APQ∽△ABC,DE∥QB时,如图2.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°.由△APQ∽△ABC,得&AQ&AC&=AP&AB&,即&t&3&=3-t&5&.解得&t=9&8&;②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得&AQ&AB&=AP&AC&,即&t&5&=3-t&3&.解得&t=15&8&.
1)当t=2时,AP=1,点Q到AC的距离是1.6(2)S=2.4t-0.8t*t(0&t&3)
S=0(t=3)
S=0.8t*t-2.4t(3&t&5)(3)t=1.875
解:(1)做QF⊥AC,∵AC=3,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,∴当t=2时,AP=3-2=1;∵QF⊥AC,BC⊥AC,∴QF∥BC,∴△ACB∽△AFQ,∴AQAB=QFBC,∴25=QF4,解得:QF=85;故答案为:1,85;(2)作QF⊥AC于点F,如图1,AQ=CP=t,∴AP=3-t.由△AQF∽△ABC,BC=52-32=4,得QF4=t5.∴QF=45t.∴S=12(3-t)•45t,即S=-25t2+65t;(3)能.①当由△APQ∽△ABC,DE∥QB时,如图2.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,此时∠AQP=90°.由△APQ∽△ABC,得AQAC=APAB,即t3=3-t5.解得t=98;②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得AQAB=APAC,即t5=3-t3.解得t=158,综上:在点E从B向C运动的过程中,当t=158或98时,四边形QBED能成为直角梯形;(4)t=52或t=4514.注:①点P由C向A运动,DE经过点C.连接QC,作QG⊥BC于点G,如图4.∵sinB=ACAB=35=QGBQ,∴QG=35(5-t),同理BG=45(5-t),∴CG=4-45(5-t),∴PC=t,QC2=QG2+CG2=[35(5-t)]2+[4-45(5-t)]2.∵CD是PQ的中垂线,∴PC=QC则PC2=QC2,得t2=[35(5-t)]2+[4-45(5-t)]2,解得t=52;②点P由A向C运动,DE经过点C,如图5.PC=6-t,可知由PC2=QC2可知,QC2=QG2+CG2=(6-t)2=[35(5-t)]2+[4-45(5-t)]2,即t=4514.
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁

我要回帖

更多关于 已知在三角形abc中 的文章

 

随机推荐