如图,在以rt三角形abcC中,∠BAC=...

(2014o齐齐哈尔)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)
(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;
(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.
(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;
(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.
题干引论:
证明:如答图1,过点D作DF⊥MN,交AB于点F,
则△ADF为等腰直角三角形,∴DA=DF.
∵∠1+∠FDP=90°,∠FDP+∠2=90°,
∴∠1=∠2.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)
(1)答:BD=DP成立.
证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,
则△ADF为等腰直角三角形,∴DA=DF.
∵∠1+∠ADB=90°,∠ADB+∠2=90°,
∴∠1=∠2.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)
(2)答:BD=DP.
证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,
则△ADF为等腰直角三角形,∴DA=DF.
在△BDF与△PDA中,
∴△BDF≌△PDA(ASA)当前位置:
>>>已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接..
已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC边于点E. (1)如图1,求证△ABF∽△COE; (2)如图2,点O是AC边的中点,AB=1,AC=2.①求证BF=OE;②求OE的长.
题型:解答题难度:中档来源:天津期末题
解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵∠BAC=90°,∴∠DAC+∠BAF=90°,∴∠BAF=∠C,∵OE⊥OB,∴BOA+∠COE=90°,∴∠BOA+∠ABF=90°,∴∠ABF=∠COE,∴△ABF∽△COE;(2)①∵O是AC边的中点,AC=2,∴AO=OC=1,∵AB=1,∴AB=OC,由(1)知△ABF∽△COE,∴△ABF≌△COE,∴BF=OE②在直角△ABC中,BC===, 由S△ABC=AB×AC=AD×BC得,2=AD,∴AD=,在直角△ABD中,BD===,在直角△ABO中,BO===,∵∠BDF=∠BOE=90°,∠FBD=∠EBO,∴△BDF∽△BOE,∴=,设OE=BF=x,∴=,∴DF=x,在直角△DFB中,由BF2=BD2+FD2,得,x2=+x2,∴x=,∴OE的长为.
马上分享给同学
据魔方格专家权威分析,试题“已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接..”主要考查你对&&相似三角形的判定,勾股定理,相似三角形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
相似三角形的判定勾股定理相似三角形的性质
相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。定理作用⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。勾股定理的应用:数学从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。生活勾股定理在生活中的应用也较广泛,举例说明如下:1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2、2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。通俗来说,就是分三步走:第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
发现相似题
与“已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接..”考查相似的试题有:
416710390494212185167470296152215647当前位置:
>>>如图,在Rt△ABC中,AC=AB,∠BAC=90°,点O是BC的中点,连结OA.(1)..
如图,在Rt△ABC中,AC=AB,∠BAC=90°,点O是BC的中点,连结OA.(1)如图1,已知BC=6,则OA=_________.(2)如图2,若点M,N分别在线段AB,AC上移动,在移动中始终保持AN=BM,则△OAN≌△OBM成立吗?并说明理由.(3)如图3,若点M,N分别在线段BA.AC的延长线上移动,在移动中始终保持AN=BM,请判断△OMN的形状,并说明理由.
题型:解答题难度:中档来源:不详
(1) (2)△OAN≌△OBM 理由如下:∵AC=AB,∠BAC=90°∴∠B=45°∵点O是BC的中点∴∠NAO=45°∴∠B=∠NAO∵∠BAC=90°,点O是BC的中点∴又∵AN=BM,∴△OAN≌△OBM(3)△OMN是等腰直角三角形理由如下:∵AC=AB,AN=BM∴NC=MA∵∠BAO=∠ACO=45°∴∠MAO=135°=∠NCO又∵AO=CO∴△OAM≌△OCN∴MO="NO," ∠MOA=∠NOC∵AB=AC,点O是BC的中点∴∠AOC=90°∴∠MOA+∠MOC=90°∴∠NOC+∠MOC=90°∴△OMN是等腰直角三角形(1)直角三角形斜边上的中线等于斜边的一半;(2)利用SAS判定两个三角形全等;(3)通过证明三角形全等可得MO=NO,易得∠NOC+∠MOC=90°,所以三角形OMN是等腰直角三角形。
马上分享给同学
据魔方格专家权威分析,试题“如图,在Rt△ABC中,AC=AB,∠BAC=90°,点O是BC的中点,连结OA.(1)..”主要考查你对&&相似多边形的性质,相似三角形的判定,相似三角形的性质,相似三角形的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
相似多边形的性质相似三角形的判定相似三角形的性质相似三角形的应用
相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)判定:如果对应角相等,对应边成比例的多边形是相似多边形.如果所有对应边成比例,那么这两个多边形相似相似多边形的性质:相似多边形的性质定理1:相似多边形周长比等于相似比。相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。相似多边形的性质定理5:若相似比为1,则全等。相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。相似三角形的应用:应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度)。
发现相似题
与“如图,在Rt△ABC中,AC=AB,∠BAC=90°,点O是BC的中点,连结OA.(1)..”考查相似的试题有:
698744428201704021721775672921682458当前位置:
>>>如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交..
如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC是所作⊙O的切线;(3)若BC=3,sinA=12,求△AOC的面积.
题型:解答题难度:中档来源:黔东南州
(1)如图所示:(2)证明:过点O作OE⊥AC于点E,∵FC平分∠ACB,∴OB=OE,∴AC是所作⊙O的切线;(3)∵sinA=12,∠ABC=90°,∴∠A=30°,∴∠ACB=∠OCB=12ACB=30°,∵BC=3,∴AC=23,BO=tan30°BC=33×3=1,∴△AOC的面积为:12×AC×OE=12×23×1=3.
马上分享给同学
据魔方格专家权威分析,试题“如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交..”主要考查你对&&直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),尺规作图&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)尺规作图
直线与圆的位置关系:直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。 (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d&r; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d&r。(d为圆心到直线的距离)直线与圆的三种位置关系的判定与性质: (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定, 如果⊙O的半径为r,圆心O到直线l的距离为d,则有: 直线l与⊙O相交d&r; 直线l与⊙O相切d=r; 直线l与⊙O相离d&r; (2)公共点法:通过确定直线与圆的公共点个数来判定。 直线l与⊙O相交d&r2个公共点; 直线l与⊙O相切d=r有唯一公共点; 直线l与⊙O相离d&r无公共点 。圆的切线的判定和性质&&& (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 (2)切线的性质定理:圆的切线垂直于经过切点的半径。 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 直线与圆的位置关系判定方法:平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程如果b2-4ac&0,则圆与直线有2交点,即圆与直线相交。如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b2-4ac&0,则圆与直线有0交点,即圆与直线相离。2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。令y=b,求出此时的两个x值x1、x2,并且规定x1&x2,那么:& 当x=-C/A&x1或x=-C/A&x2时,直线与圆相离;当x1&x=-C/A&x2时,直线与圆相交。&尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图:作一条线段等于已知线段;作一个角等于已知角;作线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线。 还有:已知一角、一边做等腰三角形已知两角、一边做三角形已知一角、两边做三角形依据公理:还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。 注意:保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。 尺规作图方法:任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。·已知圆心和半径可作一个圆。·若两已知直线相交,可求其交点。·若已知直线和一已知圆相交,可求其交点。·若两已知圆相交,可求其交点。尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.
发现相似题
与“如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交..”考查相似的试题有:
91608790766292696038124716951883763

我要回帖

更多关于 在rt三角形abc中 的文章

 

随机推荐